GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

ANTENNA AND WAVE PROPAGATION (Code: 3331101)

Diploma Programme in which this course is offered	Semester in which offered
Electronics & Communication Engineering	3 rd semester

1. RATIONALE

Antennas play vital role in wireless communication as a terminal component of transmitter and receiver systems. The quality of signals at receiver depends on type of transmitting and receiving antennas, their orientation, transmitting frequency and geographical terrain. For installation & maintenance of wireless systems the basic knowledge of wave propagation theory is essential. This course will help the students to select and install antennas of desired operating frequency for the particular application. It is therefore a core engineering course for electronic and communication engineers and hence students should learn this course for efficient working in field.

2. **COMPETENCY (Programme Outcome according to NBA Terminology):**

The course content should be taught and with the aim to develop different types of skills so that students are able to acquire following competency

• Select (with specifications) appropriate antenna for specific wireless communication system.

Examination Scheme			Total Credits	cheme	ching S	Tea			
Marks	Practica	Theory Marks		Theory Marks		(L+T+P)	rs)	(In Hou	
PA	ESE	РА	ESE	С	Р	Т	L		
30	20	30	70	05	02	00	03		

3. TEACHING AND EXAMINATION SCHEME

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning Outcomes	Topics and Sub-topics
∐nit	(Course Outcomes in Cognitive	
Cint	Domain according to NBA	
	terminology)	
Unit – I	1a. Describe properties of	1.1. Physical concept of generation of EM
Basic	electromagnetic waves.	Wave.
Electromagnetic	Ib.Explain the basic concepts of	• Static electric & magnetic field of
Ineory	electromagnetic wave theory.	steady electric current.
		• Electromagnetic field and its
		radiation from a center fed dipole.
	Ic. Describe the basic radiating	1.2 Elementary radiator
	antennas.	• Hertzian dipole; Half-wave dipole,
	Id. For the given application	Power radiated by elementary dipole
	choose the relevant radiator	using Poynting Vector method.
Unit – II	2a. Distinguish between antenna	2.1. Basic parameters: Aerial and antenna.
Antenna	and aerial.	Antenna Impedance, Radiation
Terminologies	2b. Calculate the basic antenna	Resistance, Radiation Pattern, Beam
	parameters using standard	area and beam efficiency, Isotropic
	formulas.	radiator gain, directivity and Gain,
	2c.Identify antenna specifications	radiation intensity, half power BW,
	required from standard	polarization, antenna losses, antenna
	handbooks.	efficiency, affective aperture, effective
		length of antenna, effects of antenna
		height, antenna temperature, front to
		back ratio, antenna field zones
Unit III	20 Select enternes and enterne	2.1 Padiation abaracteristics of wire
Unit – III Basic Antennas	arrays as per their operating	antennas: Resonant wire antennas ()
& Arrays	frequency ranges and radiation	2λ) Non Resonant (Rhombic) Antenna
& Allays.	nattern for the specific	3.2 Loon antenna
	applications	3.3 Folded dipole
	upplications	3.4 Antenna Arrays: Uniform linear array
		Broad side array End fire array
		3.5 Yagi-uda antenna
Unit – IV	4a. Classify antennas used in	4.1 VHF/UHF antennas: Helical antenna,
Antennas for	VHF/ UHF band	Parabolic reflector antenna, Horn
Special		antenna, Micro strip (patch) antenna,
applications		Turnstile and super turnstile antenna,
		slot antenna
	4b.Identify mobile network	4.2 Terrestrial mobile communication
	antennas.	antennas: Base station antennas, Mobile
	As Explain the concept of Smart	4.3 Smart Antennas : Need & Applications
	Antennas and its applications	The sinar manual second a Applications
	4a Prepare the specifications for	4.4 DTH receiver system: outdoor unit
	the required indoor or outdoor	antenna system and indoor unit
	DTH systems	
Unit – V	5a Explain the effect of ground	5.1 Ground Wave propagation
Wave	on electromagnetic waves	5.2 Ionosphere Layers and Sky wave

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)		Topics and Sub-topics
Propagation	propagation.		propagation: Virtual Height, Critical
	5b Explain properties of		frequency, Maximum usable
	Ionospheric layer used for		frequency (MUF), Skip distance,
	electromagnetic wave		Lowest Usable frequency (LUF),
	propagation.		Optimum Usable frequency (OUF)
	5c Explain different modes of	5.3	Space Wave propagation:
	wave propagations		Tropospheric scattered propagation,
	5d Select the antennas for		Duct Propagation
	specific mode of wave		
	propagation considering all		
	the aspects discussed thus far		

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks				
		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Basic Electromagnetic	05	4	4	2	10	
	Theory						
II	Antenna Terminologies	07	4	4	4	12	
III	Basic Antennas & Arrays.	12	5	5	8	18	
IV	Antennas for Special	10	5	5	6	16	
	applications						
V	Wave Propagation	8	3	3	8	14	
Total		42	21	21	28	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S.	Unit	Practical/Exercise(Course Outcomes in Psychomotor Domain	Approx. Hrs.
N0.	N0.	according to NBA Terminology)	Required
1.	Ι	Check the radiation pattern of half wave dipole and find HPBW.	02
2.	III	Check the radiation pattern of rhombic antenna.	02
3.	III	Check radiation pattern of loop antenna.	02
4.	III	Check radiation pattern of folded dipole antenna.	02
5.	III	Fabricate the demonstrative physical model of Yagi –Uda antenna	02
		with at least 3 radiator and one reflector.	
6.	III	Test the performance of the Yagi –uda antenna.	02
7.	III	Test the performance of the broad side array.	02
8.	III	Test the performance of the end fire array antenna.	02
9.	IV	Test the performance of helical antenna in horizontal and vertical	02
		planes	
10.	IV	Check the radiation pattern of parabolic reflector antenna.	02
11.	IV	Test the performance of horn antenna.	02
12.	IV	Select the relevant Mobile Antenna System for a particular area	02
13.	IV	Install and commission DTH receiver systems	04
		Total	28

7. SUGGESTED LIST OF STUDENTS ACTIVITIES

Following is the list of proposed students activities like:

- i. Prepare the chart of various antenna radiation patterns.
- ii. Collect details of different types of antenna parameters used in radio/TV transmitter, cellular system, wireless radio set, Radar.
- iii. Prepare the demonstration model of commonly used antennas.
- iv. Prepare the PPT/animations of 3-D radiation pattern and wave propagation of radio waves.
- v. Undertake literature survey and internet search and also handbook/datasheet search for specifications of given antenna.
- vi. Install and commission DTH systems.
- vii. Visit Satellite Earth Station (SAC)/ Doordarshan / AIR/ FM Radio Station.

8. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

- i. In Unit I & II, the fundamental wave propagation equations and formulas of electromagnetic wave propagation theory can be explained without mathematical derivations.
- ii. For Unit III, IV & V the teacher should arrange visits to different communication research laboratories as well as state of art industries to justify and reinforce the theory taught.
- iii. To familiarizing the working of various type of antennas demonstrate the use of radiation measuring meter, radiation generation instrument and various types of antennas as listed in unit III to the students in the lab period.
- iv. Introduce the latest simulation software for better understanding of radiation pattern of various types of antennas.
- v. To support and enhance the understanding of the fundamental theory of wave propagation in unit I & V, use of animations and simulation software are recommended.

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication
1	Antennas and Wave	Kraus John D, Marhefka	Tata McGraw-Hill Education,
	Propagation	Ronald J. and Khan Ahmad	Fourth Edition, or latest
		S.	
2	Antennas and Wave	Raju, G. S. N.	Pearson Education India, 3 rd
	Propagation		edition or latest
3	Antenna and Wave	Prasad, K.D. and Handa,	Satya Prakashan , New Delhi,
	propagations	Deepak	3 rd edition or latest
4	Antenna and Wave	Das, Sisir and Das	Tata McGraw-Hill Education,
	propagations	K.Annapurna	2013
5	Antenna and Wave	Harish, A. R. And	Oxford University Press,4 th
	propagations	Sachidananda M.	Edition or latest
6	Electronic	Kennedy, George and Davis,	Tata McGraw-Hill Education,
	Communication	Bernard	4 th Edition or latest
	Systems,		

B) List of Major Equipments /Materials

- i. Experimental antenna trainer kit (preferred with software simulator)
- ii. Spectrum analyser 30 MHz.
- iii. Standard DTH receiver system.
- iv. Antenna synthesis simulation demonstrative software.

C) List of Software/Learning Websites

- i. <u>www.cst.com</u>
- ii. <u>http://www.antennamagus.com/</u>
- iii. <u>http://www.antennamagus.com/antennas.php?page=antennas</u>
- iv. http://emcos.com/Antenna-Simulation-and-Optimization
- v. <u>http://www.apparentlyapparel.com/uploads/5/3/5/6/5356442/</u> practical antenna_ handbook_fourth_edition_carr.pdf

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof.** U.V. Buch, Lecturer(SG), Government Polytechnic, Gandhinagar.
- **Prof. J.D. Chauhan**, Lecturer, B & B Institute of Technology, V.V.Nagar.
- **Prof. M.R. Mandli**, Lecturer, Government Polytechnic, Rajkot.
- **Prof. Deepak P. Parikh**, Lecturer, Sigma Institute of Technology (Polytechnic), Vadodara.

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Anjali Potnis,** Assistant Professor, Department of Electrical and Electronics Engineering.
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

ANALOG ELECTRONICS

(Code: 3331102)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	3 rd Semester

1. RATIONALE

Analogue electronic components and circuits are building blocks for any electronic device used in industries or in daily life. It is therefore necessary for electronics engineers to understand clearly the principles and functioning of the basic analogue components and circuits. This course will enable the students to understand the basics of construction, working, and applications of various types of electronic components such as UJT, JFET, MOSJFET and circuits such as feedback amplifier, oscillators, power amplifiers, operational amplifier, and timers using linear ICs. Practical exercises of this course would enable students to maintain such circuits and in turn maintain equipment having such circuits. This course is therefore one of the basic core courses which is must for every electronic engineer and hence should be taken very sincerely by students.

2. **COMPETENCY** (Programme Outcome according to NBA Terminology):

The course content should be taught and with the aim to develop different types of skills so that students are able to acquire following competency

• Maintain various types of analogue electronic components and circuits.

3. TEACHING AND EXAMINATION SCHEME

Teac	ching S	cheme	Total Credits		Examination Scheme			
(In Hou	rs)	(L+T+P)	Theory Marks		Practical	Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200
4	-	4	8	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning Outcomes	Topics and Sub-topics
∐nit	(Course Outcomes in Cognitive	
Cint	Domain according to NBA	
	terminology)	
Unit – I	1a. Describe different types of	1.1. Concept of feedback: negative and
	feedback.	positive
Negative	1b. List the merits and demerits of	1.2. Merits and demerits of negative
Feedback	negative feedback.	feedback
Amplifiers	1c. Explain the concept of	1.3. Negative feedback in amplifiers
	negative feedback related to	1.4. Derivation of equation for overall
	amplifier.	gain of negative feedback amplifier
	1d. Determine the overall gain of	
	feedback amplifiers for	
	maintenance point of view,	
	1e. Describe effect of feedback on	1.5. Gain, input impedance, output
	amplifier parameters.	impedance, stability, bandwidth,
		frequency response, sensitivity,
		distortion, and noise
	1f. Explain series and shunt type	1.6. Voltage series amplifier, voltage
	of feedback in amplifier	shunt amplifier, current series
	circuits.	amplifier , current shunt amplifier.
Unit – II	2a. Justify the use of positive	2.1. Positive feedback in oscillators
	feedback in oscillator	2.2. Barkhausen's criteria for
Oscillators	2b. Describe working of tank	oscillation
	circuit with sketches	2.3. Overall gain of positive feedback
		amplifier.
		2.4. Tank circuit
	2c. Explain the working principle	2.5. RC phase shift oscillator circuit
	of different types of oscillators	2.6. Hartley oscillator circuit
	2d. List applications of various	2.7. Colpitts oscillator circuit
	types of oscillators.	2.8. Wien Bridge oscillator circuit
		2.9. Crystal oscillator
	2e. Describe construction of UJT	2.10. Construction of UJT
	with sketches.	2.11. Working and $V - I$ characteristics
	2f. Explain the working of the	of UJT
	UJT with sketches.	2.12. UJT as a relaxation oscillator
Init III	3a Differentiate between voltage	3.1 Voltage and nowar amplifian
0mt – m	and power amplifier	3.2 Classification of power amplifier
Power	3h Explain working of different	3.2. Classification of power amplifier
1 UWCI Amplifiar	types of power amplifier and	power amplifier Class A P AP
Ampiner	their applications	C and D
	3c Determine the efficiency of	3.4 Efficiency of class A and class P
	Class A and Class R type of	amplifier
	nower amplifiers	3.5 Efficiency of transformer coupled
	power ampimers.	power amplifier

	Major Learning Outcomes	Topics and Sub topics
Unit	(Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
	 3d. Explain working of Push Pull amplifiers 3e. Calculate the efficiencies of Push Pull amplifiers. 3f. Compare the working of different types of power amplifiers. 	 3.6 Operation of class B push-pull power amplifier 3.7 Efficiency of class B push pull amplifier 3.8 Complimentary symmetry push-pull amplifier
Unit - IV Field	 4a. Explain construction and working principle of JFET 4b. Describe configurations of JFET amplifier. 4c. Differentiate BJT and JFET 	 4.1 JFET: Parameters of JFET – r_d, g_m, μ 4.2 n-channel and p-channel JFET 4.3 JFET configurations: common source, drain and gate 4.4 BJT and JFET
Effect Transistor	 4d. Explain construction and working principle of enhancement type MOSFET 4e. Compare the working of JFET and MOSFET 	4.5 Types of MOSFET: enhancement type MOSFET4.6 JFET and MOSFET as amplifiers
Unit – V Linear Integrated Circuits	5a. Explain working of operational amplifier.5b. Explain working of differential amplifier.	5.1 Operational amplifier5.2 Differential amplifier
	 5c. Identify the pin specifications and voltage levels of IC 741 in the given sketch, 5d. Explain the open and closed loop concept in Op-amps 	5.3 IC-741 and its pin configuration5.4 Op-Amp: open loop and closed loop amplifier
	5e. Explain the parameters of operational amplifier	5.5 Op-Amp parameters: Input and output offset voltage, Input offset current, Input bias current, CMRR, slew rate, frequency response
6	5f. Explain applications of operational amplifier	 5.6 Inverting and non-inverting amplifier with derivation of voltage gain 5.7 Summing and differential amplifier, integrator, differentiator, comparator, V-I converter, D-A converter, current booster
	5g. Explain working and applications of Timer IC 555 with a block diagram	 5.8 IC 555: basic operation and pin description 5.9 Applications of IC 555: astable, monostable and bistable multivibrator

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Negative Feedback Amplifiers	08	2	6	2	10
II	Oscillators	10	2	4	6	12
III	Power Amplifier	12	4	6	6	16
IV	Field Effect transistor	13	4	8	4	16
V	Linear Integrated Circuits	13	2	6	8	16
Tot	tal	56	14	30	26	70

5. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF PRACTICAL/EXERCISES

de.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S.	Unit	Practical/Exercise (Course Outcomes in Psychomotor Domain	Approx.
190.	INO.	according to NBA Terminology)	Required
1	Ι	Test the performance of negative feedback amplifier and compare gain, BW with amplifier without feedback.	2
2	I	Build/test Colpitts oscillator for variable frequency.	2
3	Π	Build/test Hartley oscillator for variable frequency.	2
4	II	Build/test Wien bridge oscillator for variable frequency.	2
5	II	Build/test crystal oscillator.	2
6	II	Build/test UJT as a Relaxation Oscillator.	2
7	III	Test the performance of a n-channel JFET.	2
8	III	Test the performance of a p-channel JFET.	2
9	III	Determine the r_d , g_m , μ for JFET amplifier.	2
10	III	Build and test MOSFET as an amplifier.	2
11	III	Determine the efficiency of push pull power amplifier.	2
12	IV	Determine the of complementary symmetry push pull amplifier.	2
13	IV	Build/test transformer coupled class-A Power amplifier.	2

S. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx. Hrs. Required
14	IV	Build Audio power amplifier circuit using IC 810/LM 386/LM 391 and test it for different input power rating.	2
16	V	Build inverting amplifier using Op-Amp and observe input, output waveforms on CRO.	2
17	V	Build non-inverting amplifier using Op-Amp and test its performance using the CRO.	2
18	V	Build/test IC 741 using the CRO for different values of R and C.	2
20	V	Build/test Op-Amp as summing amplifier.	2
21	V	Build/test Op-Amp as V to I Converter.	2
22	V	Build/test inverting amplifier using IC 324	2
23	V	Build/test Astable multivibrator using IC 555 for different values of R and C.	2
24	V	Build/test Monostable multivibrator using IC 555 for different values of R and C.	2
25	V	Build/test Bistable multivibrator using IC 555.	2
26	V	Build/test IC 555 as sequential Timer.	2
27	V	Build/test Astable multivibrator using IC 556.	2
28	V	Build/test mini project using IC 41/555/810/723/556/386/391	2
		Total	56

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Access websites for collecting s specification of components/ICs using datasheet.
- ii. Present seminar on any one topic related to the subject.
- iii. Develop a small circuit/ mini project using IC 741/555/810/723/556/386/391.
- iv. Explore details of power amplifier IC used in Radio/Television/Home theatre with the help of datasheet available in the handbook.

8. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

- i. Computer based tutorial (CBT) describing operation of transistor/JFET and other active components with the help of animations or video films.
- ii. Circuit simulation using Software like Electronic work Bench/multiSIM/ Circuit Maker.
- iii. Seminars and group discussion.
- iv. Mini projects based on op-amp IC or Timer IC.

9. SUGGESTED LEARNING RESOURCES

A) List of Books:

S.	Title of Books	Author	Publication	
No.				
1	Basic Electronics and	Bhargava,	Tata McGraw- Hill	
	Linear Circuits	N.,Kulshreshtha D.,	Education, 2011	
		S.Gupta		
2	Electronics Devices and	Mottershead, Allen	PHI Learning,2011	
	Circuits			

3	Electronic Principles	Malvino, A.P.	Tata McGraw-Hill,		
	- with simulation CD		Education,7 th Edition		
4	Principles of Electronics	Mehta, V.K.	S. Chand, 2004 or		
			latest		
5	Electronics Devices and	Boylestad, Robert &	Pearson, 10 th Edition		
	Circuit Theory	Louis, Nashelsky			
6	Op-Amps and Linear	Gayakwad, Ramakant	PHI, Learning,4 th		
	Integrated Circuits	А	Edition		
7	Electronic Devices and	Dr. Sharma, Sanjay	KATSON,2012		
	Circuits				
8	Fundamentals of	David, A Bell	Oxford Press,		
	Electronic Devices and		5thEdition, 2008		
	Circuits				
B) List of Major Equipment/Materials					
2) Ener of frager Equipment/fratering					
i. Function Generator (upto 100Mhz)		(UMhz)			

B) List of Major Equipment/Materials

- i. Function Generator (upto 100Mhz)
- Digital Multimeter (Auto ranging, 3and1/2 digit display) ii.
- D.C. Power Supply (0-30volts, 10amp.) iii.
- Cathode Ray Oscilloscope (50MHz, Dual Trace) iv.
- Digital Storage Oscilloscope (30MHz, auto capturing) v.
- Experimental Trainer Kits, Bread Board, General Purpose PCB, active and passive vi. components

C) List of Software/Learning Websites

- Electronic Work Bench/MultiSIM /Circuit Maker i.
- www.nptel.com ii.
- www.ocw.mit.edu iii.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics :

- Prof. B. P. Raval, Lecturer, EC Department Government Polytechnic, Rajkot
- Prof. S. N. Sampat, Lecturer, EC Department, Government Polytechnic, Gandhinagar
- Prof.(Smt.) K N Vaghela, Lecturer, EC Department, Government Polytechnic, Ahmedabad
- **Prof.** N. B. Shah, Lecturer, EC Department, Gvernment Polytechnic, Vadnagar.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Anjali Potnis, Assistant Professor, Department of Electrical and Electronics Engineering
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

PRINCIPLES OF ELECTRONIC COMMUNICATION (Code: 3331103)

Diploma Programme in which this course is offered	Semester in which offered
Electronics & Communication Engineering	3 rd semester

1. RATIONALE

Wireless communication plays vital role in the field of electronic communication systems which includes radio, mobile and satellite communication systems. This requires that an electronic engineering diploma holder will have to maintain electronic communication equipment and circuits related to this area. This course is intended to lay the foundation for understanding the advanced communication courses in the subsequent semesters. Hence this course describes fundamentals of wireless communication covering analogue and digital modulation techniques. Since it is a basic core course, students should develop in depth understanding of all concepts and principles so that they may learn advance courses easily and effectively.

2. **COMPETENCY (Programme Outcome according to NBA Terminology):**

The course content should be taught and with the aim to develop different types of skills so that students are able to acquire following competency

• Maintain Electronic Communication Systems.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Scheme				
(In Hours)		(L+T+P)	Theory Marks		Practical Marks		Total Marks
LT	Р	С	ESE	PA	ESE	PA	150
3 0	2	5	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning Outcomes (Course	Topics and Sub-topics
Unit	Outcomes in Cognitive Domain	
	according to NBA terminology)	
Unit – I	1a. Describe EM wave spectrum,	1.1 Electromagnetic (EM) wave spectrum,
Basics of	frequency ranges and its	frequency bands and their applications
Communicat	applications.	domain
ion System	1b. Represent Sinusoidal, Rectangular, Saw-tooth, Impulse and Pulse waveform.	1.2 Signals and its representation: analog and digital Signal, Pulse, Impulse, Saw-tooth, sinusoidal and rectangular (In Time & frequency domain)
	1c. Describe communication system.	1.3 Block diagram of communication system
	1d. Justify the need for modulation.1e. Differentiate between analog and digital modulation using waveforms.	1.4 Modulation: Definition & its classification based on analog & pulse signal as carrier. Concept of digital modulation
	1f. Distinguish between external and internal noise and noise sources.	1.5 Noise in communication system, classification of noise, signal to noise ratio(S/N) and noise figure
Unit – II	2a.Derive the mathematical	2.1 Frequency spectrum and mathematical
Amplitude	expression for Double Sideband	expression for the Double sideband
and Angle	Suppressed Carrier (DSBSC)	suppressed carrier (DSBSC) Amplitude
Modulation	Amplitude Modulation (AM)	Modulated wave
	signal	
	2b. Sketch the frequency spectrum of	
	the DSBSC Amplitude Modulated	
	wave.	
	2c.Sketch the frequency spectrum of	2.2 Single sideband (SSB) Amplitude
	Single sideband (SSB) Amplitude	modulated wave
	Modulated wave.	
	2d. Derive mathematical relation	2.3 Modulation Index, carrier power,
	between carrier power, modulated	modulated signal power and modulation
	signal power and modulation index	index
	2e. Calculate total transmitted power	2.4 Single and multiple signal modulation
	signals	
	2f Explain generation of AM signal	2.5 AM using square law modulator circuit
	using square law modulator circuit.	2.5 Aivi using square law modulator encult.
	2g. Calculate the modulation index	2.6 Mathematical representation of FM wave.
	and bandwidth of frequency	Frequency spectrum, Modulation index
	modulated (FM) signal.	and Bandwidth of FM
	2h. Discriminate between phase and	2.7 Phase Modulation (PM) and FM
	frequency modulation with	
	relevant sketches.	
	2i. Distinguish between Pre-emphasis	2.8 Pre-emphasis and De-emphasis
	and De-emphasis	circuits
	2j. Describe various FM signal	2.9 Generation techniques for FM wave :
	generation techniques	Basic reactance modulation
		Varactor diode modulation
		 Stabilized reactance FM modulator

	Major Learning Outcomes (Course	Topics and Sub-topics
Unit	Outcomes in Cognitive Domain	
	according to NBA terminology)	
Unit – III	3a. Define the characteristics of radio	3.1 Characteristic of radio receiver, Sensitivity,
AM and FM	receiver	Selectivity, Fidelity, Image frequency
receivers	3b. Describe the functions of each	rejection
	block of super heterodyne	3.2 Block diagram of super heterodyne
	receiver	receiver
	3c. Describe AM detection method	3.3 Envelope detector using diode
	3d. Explain working of various types	3.4 Basic FM demodulators: Slope detection,
	of FM demodulator circuits.	Balanced slop detection, Phase
		discriminator, Balanced ratio detector
	3e. Explain functions of various	3.5 Block diagram of basic FM receiver
	blocks of FM receiver	
	3f. Explain working of	3.6 Communication receiver: Double
	communication receiver using a	conversion principle
	block diagram	
	3g. Describe need and working of	3.7 Squelch circuit, Amplitude limiting action,
	squeich circuit	Automatic gain control circuits and its
	3h. Describe need and working of	working
	Amplitude limiting circuit	
	31. Describe need and working of	
Unit IV	AGC circuit	1 Dulse Modulation techniques: PAM PWM
Dulco	signals timing diagram	PPM
Modulation	Ab Calculate the sampling frequency	4.2 Sampling of analog data (Sample & hold)
Moudanon	for any modulating signal	4.2 Salliphing of analog data (Salliphe & Hold)
	4c Explain various blocks of PCM	4.2 Resic Block diagram of Single channel
	system	Pulse Code modulation (PCM) system
	4d Describe advantage &	Pulse Code modulation (1 Civi) system
	disadvantage of PCM system	
	4e. Pros & cons of digital data	4.4 Digital Communication
	communication	
	5a. Differentiate between bit, symbol	5.1 Bit rate, Baud rate, symbol
	& Baud rate.	
	5b. Draw RZ, NRZ (Polar &	5.2 Channel coding techniques
	Unipolar), Manchester coding	
	AMI & HDB-3 signal.	
	5c. Explain 4 level digital	5.3 Concept of Time division digital
Unit V	multiplexing hierarchy	multiplexing, TDMA frame
Introduction	5d. Describe TDMA trame.	
to D <mark>igital</mark>	5e. Explain PCM-TDM system	5.4 Block diagram of basic PCM-TDM system
Modulation	5f. Sketch the waveforms of ASK.	5.5 Digital modulation techniques: Concept
technique	FSK, PSK, BFSK & BPSK &	of ASK FSK PSK BFSK BPSK using
	understands its importance in	waveform & constellation diagram
	Digital communication	waverenni & constenation diagram

5.	Unit Title		Distribution of Theory Marks			
Unit		Teaching Hours	R Level	U Level	A Level	Total Marks
Ι	Basics of communication system	08	02	04	01	07
II	Amplitude and Angle modulation	10	05	10	06	21
III	AM and FM Receivers	08	04	05	05	14
IV	Pulse Modulation	08	05	10	06	21
V	Introduction to Digital Modulation Technique	08	02	02	03	07
Tot	al	42	18	31	21	70

5. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical/Exercise	Approx. Hrs. Required
1	I	Measure amplitude of different sinusoidal frequency signals in frequency domain using Spectrum Analyser.	2
2	II	Measure modulation index of an AM envelope.	2
3	Π	Measure modulation index of an AM envelop by trapezoidal Method.	2
4	III	Obtain the frequency response of Pre-emphasis and De- emphasis circuit.	2
5	II	Determine Modulation Index of Frequency Modulated wave.	2
6	III	Locate various sections of AM radio receiver trainer kit and draw the waveforms at input and output side of each section.	2
7	III	Check the demodulated AM signal waveform using envelope detector and draw its input output waveform.	2
8	III	Demonstration of fault finding of AM or FM radio receivers.	2

S. No.	Unit	Practical/Exercise	Approx.
	No.		Hrs. Required
9	III	Obtain the response of AGC circuit of the radio receiver.	2
10	IV	Based on the sampling frequency, reconstruct the signal	2
11	IV	Check the performance PCM system for various sinusoidal	2
		signals	
12	IV	Check the performance of PAM system	2
13	II,III	Simulate AM,FM and SSB signal using Simulation software	2
14	V	Check the response of ASK modulator and Demodulator	2
15	V	Check the response of BFSK modulator and Demodulator	2
16	V	Check the response of BPSK modulator and Demodulator	2
		Total	32

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities.

- i Explore circuit of AM / FM receiver, assemble and test it
- ii Explore circuit of AM / FM transmitter.
- iii Collect details of HAM radio and CB radio and watch the working demonstration if possible.
- iv Explore details (Freq. / Standards/Company/Model/Range) of Walky-Talky, Cordless phone and Wireless set used by Police department.
- v Industrial Visit of AM / FM Radio Transmitter

8. SPECIAL INSTRUCTIONAL STRATAGIES (If Any)

- i Animation/video films showing the working principle and features of FM/AM radio receiver and PCM/DM/ADM should be shown to students while teaching the concern topic.
- ii Demonstrate working of AM/FM/Communication receiver.

9. SUGGESTED LEARNING RESOURCES

A) List of Books:

S.	Title of Books	Author	Publication
No.			
1	Analog and Digital	Singal, T. L.	Tata Mcgraw Hill, India latest
	Communication		edition
2	Electronic Communication	George Kennedy and	Tata McGraw Hill
	Systems	Bernard Davis	5 th edition or latest
3	Electronics Communication	Dennis Roddy and John	Pearson Eductation
		Coolen	4th Edition
4	Electronics Communication	Wayen Tomasi	Pearson Education,
	System (Fundamental to		5 th edition
	Advance)		
5	Analog Communication	V.Chandra Sekar	Oxford University Press
6	Electronic Communications	Robert J. Schoenbeck	PHI Learning, 2 nd Edition
	Modulation and Transmission		

, cc

7	Analog Communication	Dr.Sanjay Sharma	KATSON, 2012
8	Digital Communication	John G.Proakis,	McGraw Hill, latest Edition
9	Principles of Digital Communication	Taub and Schilling	Tata McGraw-Hill" 28th reprint, 2003

B) List of Major Equipment/Materials

- i Spectrum analyser, 30 MHz
- ii CRO Dual trace, 100 MHz
- iii RF generator/wideband oscillator
- iv AM/FM radio receiver trainer Kit
- v Digital Modulation trainer Kit
- vi Communication receiver Kit

C) List of Software/Learning Websites

i AM, FM and SSB signal generation using any simulation software.

ii MATLAB software/ Electronics work bench software for the simulation

PCM, ASK, PSK, FSK, AM and FM generation and detection circuits.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. S.J. Chauhan, HOD Electronics & Communication Engineering, G.P. Rajkot
- **Prof.M.N.Charel**, HOD Electronics & Communication Engineering, G.P. Ahmedabad
- Prof. K.J. Pithadiya, Lecturer, Electronics and Communication Engineering, BBIT, Vallabh Vidhyanagar
- Prof. (Smt.) R.M. Mehta, HOD Electronics and Communication Engineering, Sigma Polytechnic, Vadodara

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Anjali Potnis,** Associate Professor, Department of Electrical and Electronics Engineering
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

DIGITAL LOGIC DESIGN (Code: 3331104)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	3 rd Semester

1. RATIONALE

Digital technology is the fastest growing technology and have revolutionised the electronics Industry. In most of the applications digital technology has replaced analogue technology. Digital logic is heart of digital electronic circuits. A basic understanding of this subject is therefore essential to effectively maintain digital electronic devices. The study of this course will enable the students to test the working and rectify the faults of common digital circuits.

2. **COMPETENCY** (Programme outcome according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain the digital electronic circuits.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme			Total Credits		Examination Scheme			
(In Hours)		(L+T+P)	Theory	Marks	Practical	Marks	Total Marks	
L	Т	Р	С	ESE	РА	ESE	PA	150
03	01	02	06	70	30	30	20	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning	Topics and Sub-topics
	Outcomes	
Unit	('Course Outcomes' in	
Cint	Cognitive Domain	
	according to NBA	
Unit I	1a Differentiate binary	1.1 Introduction to Digital System
Omt – 1 Number	and decimal	1.1 Infroduction to Digital System
systems	number system	1.2 Binary and digital number system.
and codes	1b. Perform arithmetic	subtraction multiplication and division
and couts	operations on	1.4 Complements: n's (n 1)'s complements
	Binary numbers	1.5 Subtraction using complement method
	1c Convert of number	1.6 Octal number system
	systems to octal to	1.7 Hevedecimal number system
	hexadecimal and	1.7 The addecimal number system.
	vice versa	havadecimal number systems and vice versa
		nexadeciliar number systems and vice versa.
	1d. Interpret the Binary	1.9 Codes: BCD, Gray, Excess-3, ASCII, EBCDIC.
T T 1 / T T	codes.	
Unit – II Booleon	2a. Simplify the	2.1. Basic theorems and properties of Boolean
Boolean	Boolean functions.	algebra.
logio gotos		2.2. Boolean functions: Sum of Product (SOP) and Droduct of Sum (DOS) supressions
logic gates	2h Describe functions	Product of Sull (POS) expressions.
	20.Describe functions	2.3. Basic Digital Logic Gates: Symbol,
	of Logic gales.	NAND NOD EX OD EX NOD actor
		NAND, NOR, EA-OR, EA-NOR gales.
	2c Implement the	2.4. I Ostrive and negative logic system.
	Boolean functions	2.6. NAND NOP circuit implementations
	using logic gates for	2.0. NAND-NOR circuit implementations
		2.7. AND-OK - Invert implementations
	2d.Simplify Boolean	2.8. Karnaugh map(K-map) simplification
	expression using K-	Techniques for SOP and POS functions up to
	map.	Four variable
		2.9. Don't care condition for simplification of
		Boolan function.
Unit – III	3a. Explain function of	3.1. Combinational Circuits: Half adder, full adder,
Combinatio	combinational	parallel binary adder, half Subtractor, full
nal logic	circuits	subtractor, parallel binary subtractor, l's
circuits		complement subtractor, 2's complement
		subtractor/adder BCD adder.
	3b. Implement various	3.2. Binary to Gray and Gray to binary code
	combinational	converters
	circuits.	3.3. Decoder and Encoder
		3.4. Multiplexers and Demultiplexers
		5.5. Magnitude Comparator
		5.0. Bit error correction: Parity Generators and
		Checkers.
		5.7. BCD to Seven segment decoder

Unit Major Learning Topics and Sub-topics	
Unit Outcomes' in	
Unit ('Course Outcomes' in	
Cognitive Domain	
according to NBA	
terminology)	
Unit – IV 4a. Describe the 4.1. Types of flip-flops: Latch and Flip-flop, S-	R
Sequential function of various flip-flops, asynchronous and synchronous	S R
logic circuits types of flip-flops flip flops D flip flop I-K flip flop IK mas	ter
with the help of	Flin
circuit diagram.	r-np-
truth table and Flops.	
timing diagram.	
4b Describe the 4.2 Registers: Classification of Shift Register	Serial
working of various in serial-out serial-in parallel-out parallel	in
Registers with the	111
help of circuit	
diagram truth table	
and timing diagram	
Ac Explain the working 4.2 Asynchronous(ripple) 4 bit binary counter	
of various types of 4.2. Acyletionous(hpple) 4-bit binary counter	
Counters with the	
the belo of circuit 4.4. Synchronous counters	
diagram truth table 4.5. UP/DOWN counter	
and timing diagram 4.6. Ring counters.	
Unit – V 5a Explain working 5.1 D/A Conversion: Weighted resister R_2/R_1	
D/A A/D of D/A convertors and Posolution	
$\mathbf{D}/\mathbf{A}, \mathbf{A}/\mathbf{D}$ of \mathbf{D}/\mathbf{A} converters finducer fietwork, Accuracy and Resolution.	
and 50. Explain working of 5.2. A/D Conversion: Dual slope type, Counter	type,
Memories A/D converters. Successive approximation, Flash type.	
5c. Classify 5.3. Semiconductor Memory: RAM-SRAM and	•
semiconductor DRAM, ROM-PROM, EPROM, EEPROM	.,
Memories Flash memory.	
Unit – VI 6a. Explain working of 6.1. Logic families and level of Integration SSI.	
Digital Bipolar and MSIL SI VI SI	
Integrated unipolar logic 6.2 Characteristics of digital ICs_fan_in_fan_ou	t
Circuits families with their propagation dalay, power dissipation, poise	1,
characteristics.	
margins, figure of merit.	0
6.3. Transistor-Transistor logic (TTL) circuits:	Jpen
collector output, Totem pole output, Tri-sta	te
output.	
6.4. Emitter Coupled Logic (ECL).	
6.5. Integrated Injection Logic (IIL).	
6.6. MOS and CMOS Logic.	
6h Compare Logic 67 Comparison of different logic families	
families	
families.	
families. 6.8. Programmable devices : programmable PLA PLD PAL EPCA ASIC	

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Number systems and	06	02	04	03	09
	codes					
II	Boolean algebra and logic	08	00	08	06	14
	gates					
III	Combinational logic	08	04	06	04	14
	circuits					
IV	Sequential logic circuits	08	04	06	04	14
V	D/A,A/D and Memories	06	04	04	02	10
VI	Digital Integrated Circuits	06	04	05	00	09
Tota	al	42	18	33	19	70

5. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

an.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of Programme Outcomes/Course Outcomes in *affective domain* as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes/Course Outcomes.

S.	Unit	Practical/Exercise	Approx
No.	No.	('Course Outcomes' in Psychomotor Domain according to	
	`	NBA terminology)	Require
			d
01.	I	Build/Test the functionality of Basic and Advance Logic Gates.	2
02.		Build/Test 2 input basic logic gates using NAND gate.	2
03.	П	Build/Test 2 input basic logic gates using NOR gate.	2
04.	III	Build a circuit to Convert 4 bit Binary to Gray Code using logic	2
		gates	
05.	III	Build a circuit to Convert 4 bit Gray to Binary Code using logic	2
		gates	
06.	III	Build/Test Half Adder Circuit.	2
07.	III	Build/Test Full Adder Circuit.	2
08.	III	Build/Test Half Subtractor Circuit.	2
09.	III	Build/Test 4 bit Parallel Adder circuit.	2
10.	III	Build/Test the 3X8 Decoder circuit.	2
11.	III	Build/Test the 8X1Multiplexer circuit.	2

GTU/NITTTR/Bhopal/1-14

S. No.	Unit No.	Practical/Exercise ('Course Outcomes' in Psychomotor Domain according to NBA terminology)	Approx Hrs. Require d
12.	III	Build/Test BCD to Seven segment LED Display circuit.	2
13.	IV	Build/Test the functionality of the SR Flip-Flop.	2
14.	IV	Build/Test the functionality of the JK Flip-Flop.	2
15.	IV	Build/Test the working of the Shift Register.	2
16.	IV	Build/Test the working of the 4 bit Ripple Counter.	2
17.	IV	Build/Test the working of 4 bit UP - DOWN Counter.	2
18.	V	Build/Test Analog/Digital converter (ADC 0809 or equivalent)	2
19.	V	Build/Test digital to analog converter (DAC 0808 or equivalent).	2
20.	VI	Design and Develop mini project using digital logic.	2
		Total	40

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- Read and note down specifications of Digital ICs using data sheet: IC number/ Pin Diagram/voltage levels, applications for the following Digital ICs (TTL/CMOS): AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR gates, Decoder, Multiplexer, BCD to 7-segment decoder, SR FF,JK FF, D FF, shift Register, Counter, ADC, DAC.
- ii. Solve real life problems using binary logic theory and implement it using digital logic circuits.
- iii. Explore working of Digital clock/Digital panel.
- iv. Prepare mini project using Various Digital IC and display devices.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Take small instrumentation components to the class when teaching
- ii. Use tutorial classes for designing simple digital logical circuits and other teacher guided student activities.
- iii. Internet based home assignments
- iv. Mini projects (in group of three to four students)

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication
1.	Digital Logic and Computer	M. Morris Mano	Pearson Education, New
	Design		Delhi, 2011 or latest
2.	Digital Principles and	Malvino and Leech	TMH Pub., New Delhi, 6 th
	Application		Edition or latest
3.	Fundamentals of Digital	A. Anand Kumar	PHI Learning, New Delhi,
	Circuits		2nd Edition or latest
4.	Morden Digital Electronics	Jain, R P	TMH Education, New
			Delhi, 3 rd Edition or latest
5.	Digital Electronics	Kharate G.K.	OXFORD University Press,
			2010

B) List of Major Equipment/Materials with Broad Specifications

- i. Digital Logic trainer board.
- ii. A/D and D/A trainer modules.
- iii. Universal counter module
- iv. Digital IC tester
- v. Regulated power supply

C List of Software/Learning Websites

- i. <u>www.nptel.iitm.ac.in</u>
- ii. <u>www.ocw.mit.edu</u>
- iii. <u>www.slideshare.net/</u>

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. K. R .Vadalia**, Lecturer Electronics and Comm. Engineering, G.P. Rajkot.
- **Prof. T. P. Chanpura**, Lecturer Electronics and Comm. Engineering, G.P. Ahmedabad.
- **Prof. M. S. Dave**, Lecturer Electronics and Comm. Engineering, G.P. Ahmedabad.
- **Prof. U.V. Buch**, Lecturer Electronics and Comm. Engineering, G.P. Gandhinagar
- Prof. K. A. Dave, Lecturer Electronics and Comm. Engineering, VPMP, Gandhinagar

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Anjali Potnis**, Associate Professor, Department of Electrical and Electronics Engineering,
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering,

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

Course Title: PROGRAMMING IN C (Code: 3331105)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication	3 rd Semester

1. RATIONALE:

C forms the basics of C++, C#, Visual C/C++ etc which is current requirement in the information technology (IT) and computer science (CS). It is one of the most commonly used programming language in industry by engineers. It is a middle level language which combines features of both the high level and low level language. It is widely used to develop system programming, operating systems, embedded systems. Also, C is used for creating computer applications that are used in writing embedded software/firmware for various micro-controllers based products in electronics, industrial and communications. C is also used in developing verification software, test code and simulators for various applications and hardware products. It is therefore very important for electronic engineers to develop mastery over C language.

2. COMPETENCY (Programme Outcome according to NBA Terminology):

The course should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies:

• Develop programs in C language.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme	Total Credits	Examination Scheme				
(In Hours)	(L+T+P)	Theory Marks Pra		Practical	Marks	Total
						Marks
L T P	C	ESE	PA	ESE	PA	200
3 0 4	7	70	30	40	60	200

Legends: L - Lecture; **T** - Tutorial/Teacher Guided Student Activity; **P** - Practical; **C** - Credit; **ESE** - End Semester Examination; **PA** - Progressive Assessment

4. COURSE DETAILS

	Major Learning	Topics and Sub-topics
	Outcomes (Course	· · ·
Unit	Outcomes in Cognitive	
	Domain according to NBA	
	terminology)	
Unit – I	1a. Prepare flowcharts	1.1 Concepts of programming methodology.
Concepts,	1b. Develop algorithms	1.2 Flowchart
Constants,		1.3 Algorithm
Variables and Data Typos	1c. Learns concept of	1.4 Character set
Data Types	constants and	1.5 'C' tokens
	variables	1.6 Keywords & Identifiers
		1.7 Constants
		1.8 Variables, Declaration of variables
		1.9 Assigning values to variables
	1d. Distinguishes different	1.10 Data types
	data types and storage	1.11 Storage Class, Declaration of storage
	class	1.12 class
Unit – II	2a. Creates arithmetic and	2.1 Arithmetic operators
Operators	logical programs	2.2 Relational operators
and		2.3 Logical operators
Expressions		2.4 Assignment operators
		2.5 Increment and Decrement operators
		2.6 Conditional operators
		2.7 Bitwise operators and Special
		Operators
		2.8 Evaluation of arithmetic and logical
		2.9 expressions
	2b. Operates input and	2.10 Formatted input & output
	output Functions	2.11 Unformatted input & output
	0.1	2.12 I/O Functions: scanf(), printf(), getch(),
		<pre>putch(), gets(),puts() Programming</pre>
		exercises based on arithmetic and
		logical expressions
Unit – III	3a. Develops decision	3.1 IF statement
Branching	making sub routines	3.2 IFelse statement
and Looping		3.3 Nesting of if Else statement
		3.4 Else if ladder
()		3.5 Switch Statement
		3.6 The? : Operator
		3.7 Go To statement.
		3.8 Programming based on decision making
	3b. Implements looping in	3.9 While statement
	programs	3.10 Do and Do while statement
		3.11 For statement
		3.12 Jumps in Loops
		3.13 Use of break and continue statements in
		looping
		3.14 Complex programming exercises

	Major Learning	Topics and Sub-topics
TT 1 /	Outcomes (Course	
Unit	Outcomes in Cognitive	
	terminology)	
Unit – IV	4a. Creates ability of	4.1 Introduction to Arrays and Strings
Arrays and	handling large size	4.2 One dimensional arrays of int, float &
Pointers	data of similar nature.	characters
		4.3 Initializing two dimensional arrays
		4.4 Programming exercises based on One
		dimensional arrays
	4b. Understands efficient	4.5 Introduction to pointers
	use of memory, access	4.6 Declaration and initialization of pointers
	and distinguish real	4.7 Structure definition & initialization
	world data types	4.8 Programming exercises based on Pointers and structures
Unit – V	5a. Creates own functions	5.1 Introduction of User Defined functions
User Defined,	and able to operate	(UDF)
Library	available library	5.2 Call by value & Call by reference
Functions	functions	5.3 Library Functions: clrscr(), abs(), sqrt(),
and File		og(), pow(), int(), isdigit(), isalpha(),
Management		toupper(), tolower(), strlen(), strcat(),
		strcpy, strcmp
		5.4 Differences between library function &
		5.5 UDF 5.6 Bacursive function (Only Easterial
		Fxample)
	• •	5.7 Programming exercises based on UDF
		and library functions
	5b. Develops ability to	5.8 Introduction of file management.
	operate real world	5.9 Defining, Opening and Closing a file
	projects	5.10 Input and Output Operations on file
		management
L		munugement

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Concepts, Constants,	8	3	5	6	14
	variables and data types					
II	Operators and	9	2	4	10	16
	expressions					
III	Branching and looping	12	4	6	10	20
IV	Arrays, Pointers and	8	3	4	5	12
	Structures					
V	User defined functions,	5	2	2	4	8
	library functions and file					
	management				.O'	
	Total	42	14	21	35	70

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (**Programme Outcomes**). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx. Hrs. Required
1	Ι	Use the software for editing compiling and running C programs.	2
2	Ι	Use different menu options of software	2
3	Ι	Initialize local variables	2
4	II	Perform simple arithmetic using local variables	2
5	II	Output data using printf and cout statement	
6	II	Input data using scanf and cin statements	2

Following is the list of Practical/exercise for guidance.

S.	Unit	Practical/Exercise (Course Outcomes in Psychomotor Domain	Approx.
INO.	INO.	according to NBA Terminology)	Hrs. Required
7	II	Out put the data on screen using printf in required formats	2
8	II	Use of various mathematical operators in C	2
9	II	Perform floating point arithmetic programs	
10	II	Evaluate simple formula using C programs2	
11	II	Develop & Test programs using Conditional or Logical expressions	2
12	III	Develop & Test programs with control structure like if , if-else	2
13	III	Develop & Test programs with control structure like nested if- else	2
14	III	Develop & Test programs with else if ladder	2
15	III	Develop & Test Programs with switch & break statement	2
16	III	Develop & Test program with while loop	2
17	III	Develop & Test program with do while loop 2	
18	III	Develop & Test program with for loop 2	
19	III	Develop & Test program using break and continue statements	
20	IV	Develop & Test programs to declare and initialize arrays	2
21	IV	Develop & Test programs with one and two dimensional arrays	
22	IV	Develop & Test programs with character type arrays	
23	IV	Develop & Test programs to use library functions of C 2	
24	IV	Develop & Test programs related to pointer variables 2	
25	IV	Develop & Test programs related to structure variables 2	
26	V	Develop & Test programs with user defined functions 2	
27	V	Develop & Test programs to pass the value of local variables into 2	
		your C functions	
28	V	Create and read/write ASCII character file	2
1			50

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- 1. Multiple choice questions, short questions and answers
- 2. Technical Quiz, seminar and debate
- 3. Rapid code development and debugging competition.
- 4. The course activities include: Formal Lecture: 30% Supervised Classroom Work:
- 5. 30% Supervised Laboratory Tutorials: 30% Unsupervised Directed Learning: 10%

8 SPECIAL INSRUCTIONAL STRETAGIES (If Any)

- i. Concepts will be introduced in lectures using charts/ppt.
- ii. Quiz on various topics
- iii. Students should be helped in developing logic on individual basis (some sessions may be as tutorials)
- iv. Practical work will be through laboratory sessions.

9. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S.	Title of Books	Author	Publication
No.			
1	Programming in C	Balagurusamy, E (Fifth Edition)	Tata McGraw-Hill,
			New Delni, 2012
2	Programming in C	Gottfried Byron (Third Edition)	Tata McGraw-Hill,
		-	New Delhi, 2012
3	Introduction to C	Reema Thareja (First Edition)	Oxford University
	Programming (With		Press, 2012
	CD ROM support)		
4	Programming in C	Ashok N Kamthane	Pearson
		(Second Edition)	5
5	Let Us C	Kanetkar Yashvant 🥢	BPB Publications,
		(Twelfth Edition)	2012
6	Programming in C	Kernighan Brian and Ritchie	Prentice Hall of India
		Dennis (Second Edition)	Pvt. Ltd., New Delhi,
			2012

B. List of Major Equipment/Materials

- i. Computers with C and C++ language programming facilities. (Separate computer for each student)
- ii. Multimedia projector, Tutorial Video CD (Programming in C), Expert video lectures.

C List of Software/Learning Websites

- i. Software/tools : Turbo C or Borland C, Visual Studio
- ii. **Theory and programming concepts: www.nptel.iitm.ac.in**
- iii. www.nptelvideos.com/programming/c_programming_videos.php
- iv. www.ocw.mit.edu (Practical Programming in C MIT Open Course Ware) v. www.cprogramming.com
- vi. http://www2.its.strath.ac.uk/courses/c/
- vii. http://www.iu.hio.no/~mark/CTutorial/C-Tut-4.02.pdf

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. S. N. Sampat, Sr. Lecturer, Government Polytechnic, Gandhinagar
- Prof. G.V. Parmar, Lecturer, Government Polytechnic, Jamnagar
- Prof. R. B. Shah, Sr. Lecturer, Government Polytechnic, Ahmedabad.
- Prof. (Smt.) P. G. Patel, Lecturer, Government Polytechnic, Ahmedabad.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Shailendra Singh, Professor & Head Dept. of Computer Engineering and Applications
- Dr. Priyanka Tripathi, Associate Professor, Dept. of Computer Engineering and Applications