GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MICROPROCESSOR AND ASSEMBLY LANGUAGE PROGRAMMING (Code: 3341101)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	4 th Semester
	-

1. RATIONALE

Microprocessor is the heart of embedded system and computers. This course will provide basic knowledge of microprocessor architecture and programming in assembly language. The basic knowledge of microprocessor and assembly language programming will enable the students to learn microcontroller and embedded systems in the higher semesters. The intention of this course is to help the student to maintain microprocessor based electronic equipments.

2. COMPETENCY:

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain microprocessor based electronic equipment.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Analyse the architecture of the Intel 8085 microprocessor for its various applications.
- ii. Develop simple arithmetic programmes
- iii. Use the addressing modes and timing diagram for executing programmes efficiently
- iv. Develop assembly language program using stack and subroutine for various applications
- v. Interface peripheral devices with 8085 microprocessor

4. **TEACHING AND EXAMINATION SCHEME**

Te	aching Scl	heme	Total Credits	Examination Scheme			e	
	(In Hour	s)	(L+T+P)	Theory N	/larks	Practi	cal Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	РА	150
3	0	2	5	70	30	20	30	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit-I	1a. Define microprocessor and Diiferantiate	1.1 Microprocessor and
Microprocessor	between types of microprocessor	types of microprocessor
Architecture		
	1b. Describe the function of pins in the pin	1.1 Pin diagram of 8085
	diagram of 8085 microprocessor with a	microprocessor
	sketch.	
	1c. Define and explain dieetrant operations	1.2 Microprocessor
	performed by Microprocessor	operations
	1d. Describe the 8085 microprocessor	1.3 8085 Microprocessor
	architecture diagram with its functioning.	architecture diagram
		with its functions
	1e. Describe the register set of 8085	1.4 Register set of 8085
	If. Describe the impact of ALU on flags of	1.5 Flag Classification
	8085	1.6 1./ Interrupt types and
	1g. Describe interrupt and serial 1/0	17 Due organisation:
	In. Define the various types of ouses and clock speed	1.7 Dus organisation. Address & Data hus and
	1 Importance of demultiplexing of	control bus and
	address/data bus and control signal	demultilexing of buses
	1 State the significance of clock speed.	1.8 Clock speed
	IJ. Duite the significance of cases special	
Unit-II	2a. Differentiate between opcode and operand	2.1 Opcode and opera
8085	with examples	
Micproprocessor		
Instruction set	2b. Define the classification of the instruction	2.2 Instructions: Data
	set	transfer, Arithmetic,
		Logical, Branch, Stack
		and I/O read and write
		cycle
Unit-III	3a. Define the need of addressing modes.	3.1 Type of addressing
Addressing Mode And	3D. Classify the various addressing modes	mode OI 8085
Timing Diagram	3c. Differentiate between 1-state, machine	3.2 1-state, Machine Cycle,
	2d Evolution with sketches the timing diagram	2.2 Timing diagram
	for I/O and memory read/write cycle	5.5 Thing diagram
	3e. Describe the timing delay using NOP	3.4 Timing Delays
	instruction	
Unit-IV	4a. Develop to execute simple addition and	4.1 Addition and subtraction
Programming In	subtraction programmes using the	programmes
8085	instruction set	4.2 Multiplication and
	4b. Develop to execute simple multiplication	division programmes
	and division programmes using the	
	instruction set	
	4c. Develop to execute various assembly	4.3 Looping, Counting and
	language programs using looping and	Indexing.

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
	counting concept.	
	4d. Develop to execute assembly language programs using logical functions	4.4 Logic operations viz. AND, OR, NOR, NAND NOT, EXOR.
	4e. Develop to execute an assembly language to generate delay of specific time.	4.5 Counter and Timing delays.
	4f. Develop to execute an assembly language sub program based on Stack and Subroutine concept.	4.6 Stack and subroutines.
Unit-V Interfacing Of 8085	 5a. Define memory mapping. 5b. Discriminate between memory mapped I/O and I/O mapped I/O 	5.1 Memory and I/O mapping.
	5c. Explain the functions of the chip selection and decoder interfacing.	5.2 Chip selection and decoder interfacing.
	5d. Interface 8085 to EPROM.	5.3 Interfacing to EPROM and R/W Memory
	5e. Sketch the interfacing circuit for LED using 74LS245	5.4 Interfacing LEDs and Switches using 74LS245
	5f. Explain the function of IC 8255 with a block diagram.	5.5 Programmable Peripheral Interface- IC
	5g. Develop to execute assembly language program to read and display the data from IC 8255 ports.	8255: Configuration, Modes and Operation

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

	.0.	Teaching Hours	Distribution of Theory Marks				
Unit	Unit Title		R Level	U Level	A Level	Total Marks	
Ι	Microprocessor Architecture	10	8	6	4	18	
Π	8085 microprocessor instruction set	6	2	4	4	10	
ш	Addressing mode and Timing Diagram	10	4	6	6	16	
IV	Programming in 8085	8	2	6	4	12	
V	Interfacing of 8085	8	4	4	6	14	
	Total	42	20	26	24	70	

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

SI	Unit	Practical/Exercise	Annroy
No	No	(outcome in psychomotor domain)	Hrs
110.	110.	(outcome in psychomotor domain)	Required
1.	Ι	Identify the components of the microprocessor trainer to	2
	_	configure in the programming mode	
2.	II	Develop/Execute a simple programme to move data from one	2
		register to the other	
3.	II	Develop/Execute programme immediate data between different	2
		registers	
4.	II	Develop/Execute a programme for addition	2
5.	II	Develop/Execute a programme for subtraction	2
6.	II	Develop/Execute a programme for multiplication	2
7.	II	Develop/Execute a programme for division	2
8.	III	Develop/Execute an Assembly language program to convert	2
		Hexadecimal to ASCII code conversion.	
9.	IV	Develop/Execute Assembly language program to check whether	2
		given no is odd or even	
10.	IV	Develop/Execute a programme to transfer a block of data from	2
		one memory location to another memory location	
11.	IV	Develop/Execute a programme to add two 32-bit numbers	2
12.	IV	Develop/Execute a programme to add 2 decimal numbers in BCD	2
		format	
13.	IV 🔶	Develop/Execute a programme to convert data from grey code to	2
	- <u> </u>	binary code	
14.	IV	Develop/Execute a programme to convert data from binary code	2
1.7		to grey code	2
15.	IV	Develop/Execute an Assembly language programs based on 8 bit	2
16	IV	Davalop/Evacute on Assembly language programme to sum	2
10.	1 V	integers from 0 to 9	2
17	IV	Develop a programme to find the smallest number from an array	2
17.	1 4	of N numbers	2
18.	IV	Develop a programme to count negative values in given block of	2
		data.	
19.	IV	Develop/Execute a Subroutine to find the square of given integer.	2
20.	V	Develop/Execute an Assembly language programme to sort given	2
		array of ten bytes in descending order.	
21.	V	Develop/Execute an Assembly language programme to	2
		alternatively blink LEDs connected on Port –B of 8255 at an	

Sl. No.	Unit No.	Practical/Exercise (outcome in psychomotor domain)	Approx. Hrs. Required
		interval of 0.1 second. Draw Interface diagram.	
22.	V	Develop/Execute an Assembly language programme for 8255 to Interface keypad and display an LED	2
		Total	44

8. SUGGESTED LIST OF STUDENT ACTIVITIES.

Following is the list of proposed student activities like:

- i. Develop unit wise topics related programs in laboratory.
- ii. Develop any module of to be useful in real life application.
- iii. Prepare Multimedia presentation of module developed by students.
- iv. Prepare the charts of block diagram, circuit diagram and timing diagrams.
- v. Interface with IC 8259,IC 8279,IC 8254,IC 8251.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. As much programming
- ii. Animation/Video presentation session.
- iii. Group discussion and seminar.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S.	Title of Books	Author	Publication
No.			
1	Microprocessor Architecture	Ganonker, Ramesh	PHI Learning, New Delhi,
	Programming and Application		latest edition
2	The 8080/85 Family: Design,	Ufferbeck, John	PHI Learning, New Delhi,
	Programming and Interfacing		latest edition
3	Introduction to Microprocessor	Mathur, A.P.	TMH, New Delhi, latest
			edition
4	Microprocessor and its	Ram, B.	BPB, New Delhi, latest
	application		edition
5	Microprocessor and Interfacing	Hall, Douglas	TMH, New Delhi, latest
			edition
6	Microprocessors and	Kumar, Senthil,	Oxford University, New
	Microcontrollers	Saravanan,	Delhi, latest edition
		Jeevananthan	

B) List of Major Equipment/Materials with Broad Specifications

- i. 8085 microprocessor kits and simulator
- ii. Peripheral Interfacing circuit board of IC 8255.
- iii. CRO and Logic Analyser
- iv. Computer Systems with minimum P III processor (or equivalent) and 512 MB RAM.
- v. Multimedia Projector

C) List of Software/Learning Websites

- i. Go for free open source software wherever applicable
- ii. Simulator such as : http://8085simulator.codeplex.com/ http://gnusim8085.org/ or its

Equivalent.

- iii. Latest processor configuration : http://www.intel.com/pressroom/kits/quickreffam.htm
- iv. Intel 8085 microprocessor architecture: http://www.cpu-world.com/Arch/8085.html

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty from Polytechnic Group

- Prof. D. B. Vagadia, HOD (EC), Government Polytechnic, Rajkot
- Prof R. D. Raghani, HOD (EC), L.E. Collage, Morbi
- Prof. T. R. Parmar, Sr. Lecturer (EC), Government Polytechnic, Palanpur
- Prof. K. N. Vaghela, Sr. Lecturer (EC), Government Polytechnic, Ahmedabad
- Prof. J D Chauhan, Sr.Lecturer (EC), BBIT, Vallabh Vidhyanagar
- **Prof. (Ms) Sthuthi Rachel Joshua**, Assistant Professor, Oriental College of Engineering, Bhopal

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof.** (**Mrs.**) Anjali Potnis, Assistant Professor, Department of Electrical and Electronics Engineering.
- Prof. (Mrs.) Susan S. Mathew, Associate Professor, Department of Electrical and Electronics Engineering.

GTU/ NITTTR Bhopal/13-14

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: DIGITAL COMMUNICATION (Code: 3341102)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	4 th Semester

1. RATIONALE

Digital communication plays vital role in the field of electronic communication systems which includes wired and wireless communications viz. telecommunication, radio, mobile and satellite communication systems. This course will enable Electronics and communication engineering diploma engineers to maintain digital communication and networking equipment and circuits used in the practical field. This course also lay the foundation to understand the advanced communication courses in the subsequent semesters.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain electronic digital communication systems

3. COURSE OUTCOMES

The theory should be taught and practical should be performed in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Compare different types of pulse code modulations technique.
- ii. Select the relevant digital modulation technique for specific application.
- iii. Choose the coding technique for minimum errors in transmitting information.
- iv. Choose the relevant data transfer technique for various types of data transfer.
- v. Use the relevant applications of digital communication.

Tea	ching Scl	heme	Total		Examin	ation Sch	neme	
	In Hour	s)	Credits (L+T+P)	Theory	Marks	Prac Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	РА	150
3	0	2	5	70	30	20	30	150

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes (outcomes in cognitive domain)	Topics and Sub-topics
Unit – I Pulse Code Modulation	 1a. State the need for sampling theorem. 1b. Describe the Nyquist criteria. 1c. Explain Sample and Hold circuit. 1d. Describe functions of each block of pulse code modulation (PCM) transmitter and receiver. 1e. Describe effect of noise on PCM signal 1f. Define the following: quantization , step - size, resolution, uniform and non- uniform quantizer, Quantization noise, Companding 1g. Describe slope overload and granular noise of delta modulation 	 1.1 Sampling theorem 1.2 Nyquist criteria 1.3 Sample and hold circuit 1.4 Quantization 1.5 PCM transmitter and receiver 1.6 Delta Modulation 1.7 Adaptive Delta Modulation 1.8 Differential PCM
	 1h. Differentiate Delta and adaptive delta modulation technique. 1i. Explain working of Differential PCM (DPCM) transmitter and receiver. 1j. Compare the features of PCM, DM, ADM and DPCM 	?
Unit-II Digital Modulation Techniques	 2a. Explain the function of ASK signal generation and detection by various Modulator and Demodulator Circuits 2b. Explain the function of FSK signal generation and detection by various Modulator and Demodulator Circuits 2c. Explain the function of PSK signal generation and detection by various Modulator and Demodulator Circuits 2d. Explain the principle, process of QPSK signal generation with different techniques, Modulator , Demodulator, waveforms and constellation diagram 2e. Draw the waveforms and constellation diagram for ASK, FSK and PSK signal. 2f. Explain the principle, constellation diagram and waveforms of 8-PSK 2g. Explain the principle, constellation diagram and waveforms of 16-OAM 	 2.1 Amplitude Shift Keying (ASK) 2.2 Frequency Shift Keying (FSK) 2.3 Principle of Phase Shift Keying(PSK) 2.4 Quadrature Phase shift Keying(QPSK) 2.5 8ary- PSK 2.6 16-Quadrature Amplitude Modulator(QAM) 2.7 Minimum Shift Keying(MSK)
	2h. Explain the principle, constellation diagram and waveforms of MSK	

Unit	Major Learning Outcomes (outcomes in cognitive domain)	Topics and Sub-topics		
Unit-III Information	3a. State the significance of probability in communication	3.1 Probability 3.2 Entropy and		
Theory and	3b Define Entropy and Information and	J.2 Entropy and		
Coding	its physical significance their units	3.3 Mutual Information		
Counig	3c State Channel Capacity in terms of	3.4 Channel Canacity		
	SNR and explain its importance	Huffman Coding		
	3d State the step of following coding:	Fror detecting		
	Huffman code Error detecting and	code Error		
	correcting code (Parity Codes	correcting code		
	Hamming Codes)	contecting code		
Unit-IV	4a. State the need for data communication	4.1 Introduction of data		
Data	techniques.	communication		
Communication	4b. Discriminate between the various	techniques		
	modes of Data Communications:	4.2 Modes of Data		
	Serial, Parallel, Synchronous,	communication		
	Asynchronous	4.3 Data		
	4c. Differentiate between Data	Communication		
	Communication Equipment and Data	Hardware: DCE		
	Terminating Equipment.	and DTE		
	4d. Compare the features of RS-232 and	4.4 RS-232, RS-422		
	RS-422	4.5 Synchronous		
	4e. Differentiate the Synchronous data	Communication		
	communication protocols: message	Protocols:		
	frame format and handshaking, data	BiSYNC, SDLC		
	transfer process			
Unit-V	5a. Explain need of MODEM in	5.1 Modulator and		
Applications of	communication system.	Demodulator		
Digital	5b. Compare the features of low speed,	(MODEM): low		
Communication	medium speed and high speed modems.	speed, medium		
	Sc. Describe the USARI/UARI character	speed and high		
	format for receiver and transmitter in	speed modems		
	oriel.	5.2 USARI/UARI		
	Ju. Explain the Bluetooth profiles and	5.3 Bluetooth		
	5. Explain the need and Speech Coding	3.4 Speech Coding		
	techniques: Source Coding			
	(VOCODER) Also compare source			
	coding with waveform coding (PCM			
	DPCM, ADPCM)			

Unit	Unit Title	Teaching	Distribution of Theory Marks			Marks
No.	Hours		R	U	Α	Total
			Level	Level	Level	Marks
Ι	Pulse Code Modulation	10	05	10	06	21
II	Digital Modulation Techniques	10	05	10	06	21
III	Information Theory and Coding	07	01	03	03	07
IV	Data Communication	08	04	05	05	14
V	Applications of Digital Communication	07	01	03	03	07
	Total	42	16	31	23	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS(THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise	Approx. Hrs. Required
1	I	Check the performance of Pulse code modulator and Demodulator	2
2	Ι	Check the performance of Delta Modulator	2
3	Ι	Check the performance of Adaptive Delta Modulator	2
4	Ι	Check the performance of DPCM	2
5	II	Check the performance of Amplitude Shift Keying modulation and demodulation	2
6	II	Check the performance of Frequency Shift Keying modulation and demodulation	2
7	II	Check the performance of Phase Shift Keying modulation and demodulation	2

S. No.	Unit No.	Practical/Exercise	Approx. Hrs. Required
8	II	Check the performance of Quadrature Phase Shift Keying modulation and demodulation	2
9	II	Check the performance of 8- Phase Shift Keying modulation and demodulation	2
10	II	Check the performance of Minimum Shift Keying modulation and demodulation	2
11	IV	Convert the Parallel data into serial data	2
12	IV	Convert the Serial data into Parallel data.	2
13	IV	Transfer the data using RS-232 standard cable.	2
14	IV	Transfer the data using RS-422 standards.	2
15	v	Transfer data using UART technique and observe the transfer speed.	2
16	v	Transfer data using Bluetooth technique and check the range of the device.	
17	V	Transfer various types of data using MODEM	
		Total	34

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Design sample and hold Circuit
- ii. Explore ASK Modulator and Demodulator circuit
- iii. Explore FSK Modulator and Demodulator circuit.
- iv. Explore circuit of PSK Modulator and Demodulator
- v. Explore circuit of Modulator and Demodulator (modem)
- vi. Prepare data transfer cable for RS-232 standards
- vii. Prepare data transfer cable for RS-422 standards
- viii. Compare ranges of Bluetooth communication of various mobile
- ix. Collect technical specifications of Bluetooth headphone.
- x. Industrial visit to telephone exchange and mobile switching centre

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Animation/video films showing the Principle of working, Waveforms and features of PCM/DM/ADM/DPCM and Digital Modulation Techniques should be shown to students while teaching the concern topic.
- ii. Demonstrate how to transfer data through Modem, USB and Bluetooth using Mobile, Computers.

10. SUGGESTED LEARNING RESOURCES A) List of Books

Sr. No.	Title of Book	Author	Publication
1	Digital Communication (2 nd Edition)	R.N. Mupagi	Oxford University Press, New Delhi, Latest edition
2	Analog and Digital Communication	T. L. Singal	Tata McGraw Hill, India Latest edition
3	Modern Digital and Analog Communications Systems (3 rd Edition)	B.P. Lathi	Oxford University Press, New Delhi, Latest edition
4	Electronic Communications Modulation and Transmission	Robert J. Schoenbeck	PHI Learning, New Delhi, 2nd Edition
5	Electronics Communication System (Fundamental to Advance)	Wayen Tomasi	Pearson Education, New Delhi, 5th edition
6	Communication System(Analog and Digital)	Sanjay Sharma	S.K. Kataria and Sons, New Delhi, Latest edition
7	Electronic Communication Systems	George Kennedy and Bernard Davis	Tata McGraw Hill, New Delhi, 5th edition or latest
8	Data Communication and Networking	Behrouz A. Forouzan	Tata McGraw Hill, New Delhi, 3rd edition or latest

B) List of Major Equipment/ Instrument with Broad Specifications

- i. Spectrum analyzer, 9 kHz to 1.5 GHz Frequency Range, Typical -135 dBm Displayed Average Noise Level (DANL).
- ii. CRO Dual trace, 20 MHz Choice of any one built-in option, 30 MHz Bandwidth
- iii. RF generator/wideband oscillator Wide Frequency Range 100 KHz to 150 MHz.
- iv. Function Generator: Frequency Range 0.1 Hz to 1 MHZ.
- v. Digital Communication Trainer, In-build internal data generator, Type of Modulations and Demodulations: ASK, FSK, BPSK, QPSK, 8-PSK, 16-QAM
- vi. Delta Modulation and Demodulation Techniques –Receiver and transmitter on same board.

C) List of Software/Learning Websites

- i. http://en.wikipedia.org/wiki/Data_transmission
- ii. http://www.mathworks.in/matlabcentral/fileexchange/28416-pulse-codemodulation/
- iii. http://www.gobookee.org/amplitude-shift-keying-advantages-and-disadvantages/
- iv. http://ninjacraze.hubpages.com/hub/What-is-Data-Communication
- v. http://www.lincolnelectric.com/assets/US/EN/literature/nx320.pdf
- vi. http://www.amazon.com/Information-Theory-Network-Coding-Technology/dp
- vii. http://www.gobookee.org/information-theory-coding-by-k-giridhar/
- viii. PCM/DM/ADM/DPCM and Digital Modulation Techniques generation using any simulation software.
- ix. MATLAB software/ Electronics work bench software for the simulation

11. **COURSE CURRICULUM DEVELOPMENT COMMITTEE**

Faculty Members from Polytechnics

- Shri P.R.Patel. HOD, (EC), B.S.Patel Polytechnic, Kherva, Mehsana.
- Shri D. R. Bhojani, HOD, (EC) Darshan Institute of Engineering and
- Shri M. Y. Kantharia,
- Technology for Diploma Studies, Rajkot HOD(EC), BBIT, Vallabh Vidhyanagar
- Sr. Lecturer, (EC), Government Polytechnic, Rajkot • Shri (Smt.) K.K.Shah,

Coordinator and Faculty Members from NITTTR Bhopal

- ерата .sor, Departa • Prof. (Mrs.) Anjali Potnis, Assistant Professor, Department of Electrical and
- Prof. (Mrs.) Susan S. Mathew, Associate Professor, Department of Electrical and •

GTU/ NITTTR Bhopal/13-14

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: OPTICAL COMMUNICATION (Code: 3341103)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	4 th Semester

1. RATIONALE

Optical Communication is an essential component of the modern Telecom Industry. Therefore it is desired that the diploma engineering students should be able to operate and maintain the components used in Optical communication system.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

Maintain Fibre Optics Communication system

3. Course Outcomes

- i. Analyse optical fibre.
- ii. Install fibre optic cables
- iii. Test optical driver and receiver circuits
- iv. Identify optical components
- v. Measure optical fiber parameters

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme	Total Credits		Examination Scheme			
(In Hours)	(L+T+P)	Theory	Marks	Practical	Marks	Total Marks
L T P	С	ESE	PA	ESE	PA	150
3 0 2	5	70	30	20	30	130

S

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I Light propagation in Optical Fiber	1a. Describe the phenomenon of total internal reflection.	 1.1Ray model: 1.1.1 Fundamental laws of optics : refraction, Snell's law, critical angle, total internal reflection 1.1.2 Ray propagation in step index fiber 1.1.3 Numerical Aperture and acceptance angel 1.4 Definition of Skew rays and Meridional rays 1.2 Wave model 1.2.1 Phase velocity and group velocity 1.3.2 Modes in optical fiber 1.3.3 V-number & normalized frequency
	1b. Classify the different types of Optical fiber used in industry.	1.3 Types of Optical Fiber: 1.3.1 SI and GI 1.3.2 SM and MM
	1c. Explain different types of losses in Optical fiber.	 1.4 Attenuation: 1.4.1 Absorption losses: intrinsic and extrinsic 1.4.2 Linear scattering losses: rayleigh and mie 1.4.3 Fiber bend losses: micro and macro. 1.5 Dispersion: 1.5.1 Intermodal Dispersion in multi mode step index fiber 1.5.2 Intra-modal (Chromatic) Dispersion: material and wave guide dispersion. 1.6 Dispersion shifted and dispersion flattened fibers
	1d. Describe Fiber optics communication system with its advantages & disadvantages	1.7 General configuration of Fiber optic communication system
Unit – II Optical Fiber Cables & Connections	2a. Explain Fibre fabrication process and cabling techniques.	 2.1 Fiber Fabrication: 2.1.1 Fiber Materials 2.1.2 Double crucible method 2.1.3 Vapor deposition methods: MCVD, VAD 2.1.4 Fiber drawing process 2.2 Fiber optic cables : 2.2.1 Needs of cabling 2.2.2 Fiber Cables: Slotted core, loose tube and multi-fiber ribbon
	2b. Describe splicing and joining of fibre cable	 2.3 Connection losses: 2.3.1 Extrinsic Parameters: Fresnel reflection, Misalignment, and Other factors. 2.3.2 Intrinsic Parameters: NA mismatch, diameter mismatch 2.3.3 Fiber end preparation for loss minimization. 2.4 Splices: 2.4.1 Fusions Splices

Unit	Major Learning	Topics and Sub-topics
	Outcomes	2.4.2 Mechanical splices: Capillary, V-grooved, Loose tube, Spring groove and elastomeric splices.
	2c. Explain the process of Connecting the fibre cable with connectors	2.5 Fiber optic connectors: Ferrule, Expanded beam.
Unit – III Optical Sources and Detectors	3a. Describe working principle of various optical Source	 3.1 Basic concepts of Absorption and Emission in semiconductor 3.2 Construction and Operating Principle of LED 3.3 Heterojunction structure: SLED, EELED 3.4 Construction and Operating Principles of Semiconductor LASER Diode
	3b. Describe working principle of various optical detector	 3.5 Quantum efficiency and Responsivity 3.6 p-n photodiode 3.7 p-i-n photodiode 3.8 Avalanche photo diode
	3c. Write steps for coupling : Source to fibre and fibre to detector	3.9 Coupling between fiber and source/detector
	3d. Understand driver circuits used in Optical communication system	 3.10 LED driver circuit: Analog, Digital 3.11 LASER driver circuit: analog, digital 3.12 Optical receiver block diagram 3.13 Common source FET preamplifier 3.14 Regenerative repeater
Unit – IV Optical components	4a. Explain the functions of various Optical Components	4.1 Optical couplers and isolators: types and functions4.2 Optical switches4.3 Beam splitter
& Integrated optics		4.4 Optical multiplexer and demultiplexer4.5 Optical wavelength converter4.6 Bragg grating
6	4b. Describe working of optical amplifier4c. Understand concept of Integrated optics	4.7 Optical Amplifiers-Semiconductor optical amplifier, EDFA, Raman amplifier4.8 Concept of Integrated optics
Unit – V Characteriz ation &	5a. Measure optical fiber parameters	5.1 fiber parameters measurement: attenuation, NA, inter modal dispersion, RI profile
Applications	5b.Describe working principle of Optical Power Meter & OTDR	5.2 Optical power meter5.3 Optical time domain reflectometer
	5c. Understand application of WDM in Fibre optics communication system	5.4 WDM & DWDM

Unit	Major Learning Outcomes	Topics and Sub-topics
	5d. Classify & application of fibre optic sensors.	5.5 Fiber Sensors
	5e List application of various LASER used in industries & medical surgery.	5.6 laser Types: Concept of solid state, semi conductors & gas laser5.7 Application of Different Lasers

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	A	Total
		Hours	Level	Level	Level	Marks
Ι	Light propagation in	10	9	4	2	15
	Optical Fiber				0	
II	Optical Fiber Cables and	8	10	3	2	15
	Connections			5		
III	Optical Sources and	10	8	4	3	15
	Detectors			0.2		
IV	Optical components &	7	10	1	0	11
	Integrated optics					
V	Applications	7	10	2	2	14
Total		42	47	14	9	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit	Practical/Exercise	Apprx.
	No.		Hrs. Required
1	Ι	Measure N.A. of optical fiber	2
2	Ι	Establish Analog communication optical link	2
3	Ι	Establish Digital communication optical link	2
4	Ι	Measure attenuation of given optical fiber	2
5	Ι	Measure bending loss of given optical fiber	2
6	Ι	Demonstrate various fiber cables	2
7	II	Demonstrate fiber end preparation process.	2
8	II	Demonstrate Splicing Techniques	2
9	II	Demonstrate various connectors	2
10	III	Plot characteristics of LED	2
11	III	Plot characteristics of LASER diode	2
12	III	Plot characteristics of Photo Diode	2
13	III	Build and test LED drive circuits	2
14	IV	Demonstrate OTDR	2
15	IV	Demonstrate Optical Power Meter.	2
16	III	Build fibre optics link using PAM technique 🏒 🌅	2
17	III	Build fiber optics link using TDM technique	2
		Total	34

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- 1. Visit nearby fiber optics industries.
- 2. Hands on training on fibre connecterization.
- 3. Arrange visit to BSNL to see live circuits and measurement of parameters
- 4. Collect information of transatlantic optical network used for communication.
- 5. Visit any Campus Wide area network which uses optical fiber .
- 6. Explore use of lasers in medical treatment (Eye, Kidney ,brain,ulcer,cancer etc)

9. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No.	Title of Books	Author	Publication
1	Optical Fiber Communication	John M Senior	Pearson
2	Fiber Optics & Optoelectronics	R P Khare	Oxford
3	Fiber Optic Communication	D C Agarwal	S Chands
4	Light wave Communication	Rajappa	Penram
	Systems: A Practical Perspectives	Papannareddy	
5	Optical Fiber & Fiber Optic	Subir Kumar Sarkar	S Chands
	Communication		

B. List of Major Equipment/Materials

- 1. OTDR
- 2. Optical power meter
- 3. CRO
- 4. Fusion splicing machine
- 5. Optical fiber : Glass, Plastic
- 6. Semiconductor laser

C List of Software/Learning Websites

Material / Products:

http://computer.howstuffworks.com/fiber-optic.htm http://www.ntu.edu.sg/library/Pages/default.aspx http://nptel.iitm.ac.in/courses/askaquestion.php?subjectId=117101002 http://www.thefoa.org/tech/ http://www.thefoa.org/fo_urls.htm http://en.wikipedia.org/wiki/Optical_fiber http://www.telecomramblings.com/network-maps/usa-fiber-backbone-map-resources/ http://www.foci.com.tw/pd_scw.html Videos: http://nptel.iitm.ac.in/courses/117101002/ http://www.youtube.com/watch?v=aqazAcE19vw http://www.youtube.com/watch?v=pIIBINW7sOo http://www.youtube.com/watch?v=ASMcrcgZSrw http://www.youtube.com/watch?v=lII8Mf_faVo http://fiberu.org/basic/LP3.html

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

1.Shri M S Dave
2.Shri U V Buch
3.Shri S M Gheewala, Sr. Lecturer, EC Dept, Government Polytechnic, Gandhinagar.
Sr. Lecturer, EC Dept, Government Polytechnic, Valsad.

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof.** (Mrs.) Anjali Potnis, Assistant Professor, Department of Electrical and Electronics Engineering.
- **Prof.** (Mrs.) Susan S. Mathew, Associate Professor, Department of Electrical and Electronics Engineering.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ELECTRONICS INSTRUMENTS AND MEASUREMENT (Code: 3341104)

Diploma Programme in which this course is offered	Semester in which offered
Electronics And Communication Engineering	4 th Semester

1. RATIONALE

Troubleshooting of electronic equipment is an essential requirement of Service sector industry. This course will help to develop skills to become professional technician with capability to measure electrical parameters using various instruments. By learning this course students will able to know basics of various Instruments, transducers and working of electronic circuits used in electronic test and measuring instruments.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of following competency

• Maintain various electronic, test and measuring instrument.

3. COURSE OUTCOME

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Measure various electrical parameters with accuracy, precision, resolution.
- **ii.** Use AC and DC bridges for relevant parameter measurement.
- iii. Select appropriate passive or active transducers for measurement of physical phenomenon.
- **iv.** Use Signal Generator, frequency counter, CRO and digital IC tester for appropriate measurement.
- v. Test and troubleshoot electronic circuits using various measuring instruments.
- vi. Maintain various types of test and measuring instruments.

4. TEACHING AND EXAMINATION SCHEME

	Scheme	amination	Exa		Total Credits	cheme	ching S	Tea
Total Marks	Marks	Practical	Theory Marks		(L+T+P)	(In Hours)		
	PA	ESE	PA	ESE	С	Р	Т	L
150	30	20	30	70	5	2	-	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE -End Semester Examination; PA - Progressive Assessment

5. COURSE DETAIL

Unit	Major Learning Outcomes Topics and
Umt	(in cognitive domain) Sub-topics
Unit – I	1a.Define accuracy, precision,1.1Accuracy, precision,
Characteristic of	resolution resolution, error and noise
Measurements	1b. Describe the types of error 1.2 Types of errors
and Bridges	1.3 Limiting of errors
	1c. Explain working and 1.4 Wheatstone bridge, Kelvin's
	application of DC bridges double bridge
	1d. Explain working and 1.5 Maxwell's bridge, Hay
	application of AC bridges bridge, Schering bridge
Unit – II	2a. Differentiate between moving2.1 Moving coil and moving
Basic Parameter	iron and moving coil type iron type instruments
Measurements	instruments 2.2 DC and AC voltmeter
	2b. Measure DC and AC voltage
	and current using analogue
	meter.
	2c. Extend the measuring range of
	the meters.
	2d. Explain its working of DVM 2.3 Electronic multimeter
	With sketches. (DVM)
	2e. Describe working and 2.4 Types- ramp type,
	meter successive approximation
	type DVMs
U	2f Discriminate between energy 25 Watt meter Energy meter
	and power clip-on meter
	2g. Measure energy and power 2.6 Hot wire instrument
	using Watt meter and Energy
	Meter.
	2h. Describe the construction of
	hot wire instrument.
	2i. Describe its working LCR – Q 2.7 LCR- Q meter : Basic
	meter with sketches circuit, applications
	2j. Measure quality factor of a 2.8 Series and parallel

Unit	Major Learning Outcomes	Topics and
	(in cognitive domain)	Sub-topics
	coil and a capacitor .	connection of Capacitor
		and inductor.
Unit – III	3a. Describe functions of basic	3.1. Block diagram of C.R.O.
Oscilloscopes	building of CRO	3.2. Cathode ray tube:
	3b. Explain deflection systems.	construction, operation,
	3c. Measure parameters viz.	screens, graticules
	Amplitude, frequency and time	3.3. Vertical deflection system,
	period using CRO.	Horizontal deflection
		system, Delay line,
		3.4. Measurement of
		frequency, time delay,
		phase angle and
		modulation index
		(trapezoidal method)
		3.5. Oscilloscope probe:
		structure of 1:1 and 10:1
		3.6 multiple trace CRO
	3d Explain working principle of	3.7 Digital storage
	digital storage oscilloscope	oscilloscope and its
	angital storage oscilloscope.	features
Unit – IV	4a. Differentiae the following:	4.1. Classification of
Transducers	active and passive, primary	transducers
	and secondary transducers.	4.2. Unbonded strain gauge
	4b. Describe working of LVDT	4.3. Displacement transducers
	transducer.	4.4. LVDT
	4c. Explain the principle of	4.5. Capacitive transducers
	Capacitive and Inductive	4.6. Inductive transducers
	transducer	4.7. Resistive and capacitive
		touch screen transducer
	1d Describe functions of velocity	used in mobile
	and pressure transducers	4.8. Flezo-electric transducer
	Ae Explain optical & stroboscopic	4.9. Velocity transducer
	tachometer	technique
	tuenometer.	teeninque
S	4f. Describe the working if	4.11. Temperature
	different types of temperature	measurement:
	transducers.	Thermocouples: Seebeck,
	4g. Explain principle of	Peltier Effect, J,K,R,S,T
	Thermocouple.	Types, Thermistors
	4h. Describe working of of RTD	4.12. Resistance thermometer
	and Thermistor	RTDs – PTC, PT-100 (2-
		3-4 Wire systems-only
		circuit

T 1	Major Learning Outcomes	Topics and
Unit	(in cognitive domain)	Sub-topics
Unit – V Test And Measuring Instruments	 5a. Describe working principle of function generator. 5b. Describe working principle of audio signal generator. 5c. Describe working principle of 	 5.1. Function generator 5.2. Audio frequency signal generation 5.3. Sweep frequency generator
	Sweep frequency generator 5d. Define pulse parameters viz. pulse duration ,pulse width, duty cycle, On and off time of pulse	5.4. Pulse and square wave generator
	5e. With sketches explain the functions of different types of frequency counters	 5.5. Simple frequency counter, Display counter, Cascading counters 5.6. Multiplexing of display in frequency counter 5.7. Period measurement
	 5f. Explain working of digital IC tester. 5g. Explain working of Logic analyzer 5h. Explain working function of Spectrum analyzer. 5i. Explain working function of Harmonic distortion analyzer. 5j. Explain working function of Field Strength Meter. 	5.8. Digital IC tester, Logic analyzer, Spectrum analyzer, Harmonic distortion analyzer, Field strength meter (dB meter)

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

.

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Characteristic of	05	04	03	03	10
	Measurements and Bridges					
I	Basic Parameter	10	03	06	07	16
(3	Measurements					
III	Oscilloscopes	07	02	08	02	12
IV	Transducers	10	03	05	08	16
V	Test and Measuring	10	02	08	06	16
	Instruments					
Tot	al	42	14	30	26	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF PRACTICAL/EXERCISES

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical/Exercise	Appro
No.	No.	(outcomes in psychomotor domain)	x. Hrs.
			Requir ed
1	Ι	Measure various parameters viz. voltage, current, resistance using	2
		Digital Multimeter.	
2	Ι	Measure the value of unknown resistor using Wheatstone bridge.	2
3	II	Convert given galvanometer to DC/AC current- meter.	2
4	II	Convert given galvanometer to DC/AC Volt-Meter.	2
5	II	Measure quality Factor of given Inductor and Capacitor using LCR Q-	
		Meter.	
6	IV	Obtain characteristic of LVDT.	2
7	IV	Obtain characteristics of strain gauge.	2
8	IV	Obtain characteristics of thermocouple.	2
9	IV	Obtain characteristics of thermistor.	2
10	IV	Obtain characteristics of RTD transducer.	2
11	IV	Control temperature using RTD in any specific application.	2
12	III	Measure voltage, frequency, phase and modulation index	2
		(trapezoidal method) using CRO.	
13	III	Measure Unknown frequency using Lissajous patterns.	2
14	III	Demonstrate features of digital storage oscilloscope.	2
15	V	Analyse sine/square wave in frequency domain using spectrum	
		analyser.	
16	V	Test various digital IC using I.C. Tester.	2
17	V	Measure various RF signal strength using field strength meter.	2
		Total	34

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities:

- i. Explore data sheets/ technical specifications of transducers.
- ii. Present seminar on advanced Instrumentation topic.
- iii. Mini project based on transducer.
- iv. Explore Circuit of temperature/pressure control.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Computer based CBT describing operation of transducer.
- ii. Bridge simulation using Software like Electronic Workbench/multiSIM.
- iii. Seminars /experts lecture and group discussion.
- iv. Visit of Electronics Instruments calibration laboratories.

10. SUGGESTED LEARNING RESOURCES

(A) List of Books

S.	Title of Books	Author	Publication
No.			
1	Electronic Instruments and	Cooper, W.D.	PHI Learning, New
	Measurement Techniques	Halfrick, A.B.	Delhi, latest edition
2	Electrical and Electronic	Sahani, A.K.	Dhanpat Rai, New
	Measurements		Delhi, latest edition
3	Elements of Electronic	Joseph, J.Carr	Pearson, New Delhi,
	Instrumentation and		latest edition
	Measurement		
4	Electronic Instrumentation and	David, Bell	PHI New Delhi, latest
	Measurements		edition
5	Electronic Measurements and	Kishor, K Lal	Pearson, New Delhi,
	Instrumentation		latest edition
	Instrumentation		latest edition

B. List of Major Equipment/Materials with broad specification

- i. Function generator
- ii. Digital multimeter
- iii. D.C. power supply
- iv. Cathode Ray Oscilloscope
- v. Digital Storage Oscilloscope
- vi. LCR-Q meter
- vii. Field strength meter(dB meter)
- viii. Experimental trainer kits, Bread board, Computers

C List of Software/Learning Websites

- i. Electronic Workbench/MultiSIM/Circuit Maker
- ii. www.ocw.mit.edu
- iii. www.home.agilent.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Shri B. P. Raval, Sr. Lecturer, (EC), Government Polytechnic, Rajkot
- Shri B. B. Renuka, Sr. Lecturer, (EC) Government Polytechnic, Ahmadabad
- Shri A. R. Chandegara Sr. Lecturer, (EC), Government Polytechnic, Palanpur

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. (Mrs.) Anjali Potnis**, Assistant Professor, Department of Electrical and Electronics Engineering.
- **Prof.** (Mrs.) Susan S. Mathew, Associate Professor, Department of Electrical and Electronics Engineering.

HUQUESTIONPapers.con

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INDUSTRIAL ELECTRONICS (Code: 3341105)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	4th Semester

1. RATIONALE

Exposure to application oriented electronic circuits commonly used in the industries is very essential for any Electronics and Communication Diploma Engineering. This course will enable the students to understand the construction, working, and applications of various types of power electronic components like SCR, DIAC, TRIAC, IGBT and applications based circuits such as fan regulator, photo-electric relay, AC/DC power controller, Polyphase rectifier, Inverters etc. Hence study of this course will enable the students to test and troubleshoot the Industrial electronic circuits and components.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain the industrial electronic equipments.

3. COURSE OUTCOMES

The theory should be taught and practical should be performed in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Choose relevant thyristor for the given application
- ii. Troubleshoot AC & DC power control circuits employing thyristors
- iii. Troubleshoot inverter, chopper and cyclo-converters
- iv. Use photoelectric devices in relevant applications
- v. Use different types of timers in specific applications
- vi. Maintain induction heating and dielectric heating equipment

4. TEACHING AND EXAMINATION SCHEME

Te	aching Sc	heme	Total		Exan	nination	Scheme	•
10	(In Hour	rs)	Credits (L+T+P)	The Ma	eory arks	Prac Ma	ctical rks	Total
L	Т	Р	С	ESE	PA	ESE	PA	Marks
04	00	02	06	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
Unit-I Introduct ion to Thyristor s	 1a Describe working & constructional features of SCR, DIAC, TRIAC, PUT, IGBT with the help of characteristic curve . 1b Draw the characteristic curve of SCR, DIAC, TRIAC, PUT, IGBT . 1c List applications of SCR, DIAC, TRIAC, PUT, IGBT 1d Explain working of SCR using transistor analogy 	1.1 Industrial electronics devices : SCR, DIAC, TRIAC, PUT, IGBT
	 1e Explain the turn ON methods of thyristor (SCR) - triggering methods 1f Explain the turn OFF methods of SCR - commutation techniques of SCR 	1.2 Triggering methods of SCR1.3 Commutation techniques of SCR
	 1g Describe construction & working of Opto- Isolators, Opto-TRIAC, Opto- SCR, Opto-transistor. 1h Draw characteristics of Opto- Isolators, Opto-TRIAC, Opto-SCR, Opto-transistor 1i List industrial applications of Opto- Isolators, Opto-TRIAC, Opto-SCR, Opto-transistor 	1.4 Opto electronic devices: Opto-Isolators, Opto-TRIAC, Opto- SCR, Opto-transistor
Unit-II Industria I & Power Applicati ons	 2a Explain working of Half & Full wave control bridge rectifiers, various types of control rectifier circuits using SCR. 2b Explain use of SCR as a static switch. 	Typical Industrial Thyristor Applications: 2.1 Control rectifiers using SCR 2.2 SCR as a static switch
6	 power control circuit using DIAC- TRIAC. 2d Draw schematic circuit for the above application. 	using DIAC-TRIAC
	 2e Describe function of DC power control circuit using SCR with UJT in triggering circuit. 2f Draw schematic circuit for the above application. 	2.4 UJT Triggered SCR power control.
	 2g Select the appropriate Photoelectric devices for switching in power control application 2h Explain the working of Solid State 	 Photoelectric devices for switching 2.5 Photo electric relay/switch using LDR, LASCR, photodiode 2.6 Solid state relay using Opto-

	relays using Opto TPIAC Opto	TRIAC Onto SCP Onto transistor
	SCP. Onto transistor	TRIAC, Opto-SCR, Opto-transistor
TI	SCR, Opto-transistor	2.1. Cincle where we difference at
	Sa Compare single and Poly-phase	5.1 Single phase reculters and
Power	rectifier circuits.	Polypnase rectifiers
Converte	3b Describe the applications of Poly-	3.2 Inree-phase H.W. & Inree-phase
rs	phase rectifiers.	F.W. rectifiers
	3c Explain working of Three-phase H.W.	
	& Three-phase F.W. rectifiers.	
	3d Explain the Principle & working of	3.3 Inverters:
	Series, Parallel and bridge type	Series, Parallel and bridge Inverters
	Inverter circuits.	
	3e Describe the applications of Series,	
	Parallel and bridge type Inverters	
	3f Explain the Principle & working of	3.4 Single phase cyclo-converters
	single phase Cyclo converter circuits	
	3g Describe the applications of single	G
	phase Cyclo converter	
	3h Explain the Principle & working of	3.5 Chopper
	Chopper circuits.	
	3i Describe the applications of Chopper	
	3j Describe the working of UPS &	3.6 UPS : online & offline
	SMPS with the help of block diagram.	3.7 SMPS
	3k List the applications and technical	
	specifications of UPS & SMPS.	
Unit-IV	4a Explain Principles of RC based time	4.1 Basic Time Constant ckt. : RC
Timers	constant circuit.	timing circuits
and High	4b Simulate / Describe applications as	4.2 Timer using IC555
Frequenc	timer circuits using SCR, IC 555, IC	4.3 Sequential timer using IC555, IC556
У	XR-2240and IC 556 for Timer,	4.4 SCR Delay timer
applicatio	Sequential timer, Delay timer,	4.5 Programmable timer using IC XR-
ns	Programmable timer.	2240
	4c Explain the principle of Induction	4.6 Induction heating
	heating.	
	4d Describe the working of Induction	
	heating, drawing the schematic block	
	diagram	
	4e List merits-demerits of Induction	
- (^	heating	
	4f List application of Induction heating.	
	4g Explain the principle of Dielectric	4.7 Dielectric heating
	heating	
	4h Describe the working of Dielectric	
	heating, drawing the schematic block	
	diagram	
	4i Compare merits-demerits of	
	Dielectric heating	
	4j List applications of Dielectric heating	

Unit-V Solid State Controls	5a Explain the working of Solid State Controls for the various types of motors i.e. Series, Shunt, Universal, Servo and Stepper motor.	 5.1 Single phase DC shunt motor and its speed control using thyristors 5.2 Single phase Induction motor (AC motor) and its speed control using thyristors-TRIAC 5.3 Universal motor and its speed control 5.4 Stepper motor – construction,
		working and its applications 5.5 Servo motor - construction, working
		and its applications.
	5b Explain the working of Synchros	5.6 Synchros - construction, working and its applications.
	5c Draw the block diagram of Programmable Logic Control and explain the function of each block	5.7 Programmable Logic Control - block diagram, working, advantages, applications.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

T T 1 /		Teaching	Distribution of Theory Marks			
Unit	Unit Title	Hours	R Level	U Level	A Level	Total Marks
Ι	Introduction to Thyristors	12	6	6	4	16
Π	Industrial & Power Applications	10	2	4	6	12
III	Power Converters	12	3	4	8	15
IV	Timers and High Frequency applications	12	8	4	3	15
V	Solid State Controls	10	3	3	6	12
	Total	56	22	21	27	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical/Exercise	Approx Hrs.
No	No.	(Outcomes' in Psychomotor Domain)	Required
1	Ι	Plot V/I Characteristics of SCR	2
2	Ι	Plot V/I Characteristics of DIAC	2
3	Ι	Plot V/I Characteristics of TRIAC	2
4	Ι	Plot Characteristics of Opto-Isolator	2
5	Ι	Perform R-C phase shift control of SCR	2
6	II	Demonstrate dv/dt limitation of SCR	2
7	II	Test Half control bridge rectifier with filter	2
8	II	Test Light operated Relay/Photo-electric switch	2
9	II	Obtain Characteristics of LASCR	2
10	III	Measure efficiency of Poly phase Rectifier	2
11	III	Measure Load/Line regulation of SMPS	2
12	IV	Implement RC Timer using Zener diode & Transistor	2
13	IV	Perform Sequential Timer operation using IC-555	2
14	IV	Implement On-delay timer using IC-555	2
15	IV	Implement Delay timer using SCR	2
16	IV	Implement Programmable Timer IC-XR2240	2
17	V	Measure Speed of DC shunt motor controlled by open	r
17	v	loop-close loop control system	L
18	V	Measure Speed of Universal Motor controlled by	2
10	v	SCR/TRIAC	2
19	V	Test Characteristics of Solid State Relay	2
20	V	AC Single phase Servomotor FW/REV control	2
21	V	Perform the position control using synchro transmitter &	2
<u>~1</u>		synchro receiver.	2
Tota	l (perfo	rm sufficient number of practical from above for 28 hours)	42

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Find Specifications and package of SCR, TRIAC, DIAC, PUT from datasheet.
- ii. Find Specifications and package of Opto-TRIAC, Opto-SCR, Opto-Transistor from datasheet.
- iii. Collect specification of commercially used UPS, Inverter, SMPS & all motors in syllabus.
- iv. Find Specifications and package of IC-555, IC-556, IC-XR2240 from datasheet.

- v. Find Specifications and package of DC shunt motor, Induction motor, Universal motor, Synchro, Servo motor from datasheet.
- vi. Mini projects: (Should be given individual basis from following)
 - Fan regulator using TRIAC/DIAC
 - Light operated Relay
 - Cyclic Timer using IC555
 - Star-Delta timer using IC 555
 - Solid State Relay using Diac-Triac
 - SCR Firing using UJT
 - Tone burst modulation using IC 556
 - Project on XR2240
 - SMPS based on IC 7840
 - Projects on MOC3011
 - Projects on MOC3031
 - Zero cross detector using PC817

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Industrial Visit
- ii. Internet based assignments
- iii. Organising expert lecture
- iv. Display of appropriate video films

10. SUGGESTED LEARNING RESOURCES

A) List of Books

No.	Title of Book	Author	Publication
1	Industrial Electronics and Control	S.K.Bhattacharya & S.Chatterjee	TTTT, Chandigarh
2	Industrial Electronics	G.K. Mithal	Khanna
3	Industrial and Power Electronics	Harish C. Rai	Umesh Publication
4	Thyristor Engineering	M.S. Berde	Khanna
5	Electronics in Industry	George M. Chute & Robert D. Chute	McGraw-Hill
6	Power Electronics	M.H. Rashid	PHI
7	Industrial electronics Manual	Paul Zbar	McGraw Hill

B) List of Major Equipment/Materials with Broad Specifications

i Trainer kits for

- SCR, DIAC, TRIAC
- Photo devices, LASCR, Opto-TRIAC
- Controlled Rectifier, Polyphase rectifiers, Inverters

- SMPS,
- IC-555 timer, Sequential Timer
- Speed control of AC/DC Motor, Universal motor, AC Servomotor
- Synchros, Solid State Relay
- ii CRO, Function Generator, Power supply, Digital multi meter, bread board
- iii Consumables Component: IC555/556, XR2240, MOC3011, MOC3031, PC817, MCT2E, SCR S104, TYN604, TRIAC BT136, DIAC DB32

C) List of Software/Learning Websites

- i. Common website for Industrial electronics:
- ii. Datasheets: <u>http://www.epanorama.net/links/searchlinks.html#datasheets</u>
- iii. Thyristor: <u>http://www.epanorama.net/links/componentinfo.html#thyristor</u>
- http://en.wikipedia.org/wiki/Thyristor
- iv. SCR: <u>http://www.allaboutcircuits.com</u>
- v. Opto-Electronics: <u>http://www.epanorama.net/links/lights.html#dimmer</u>
- vi. Opto-isolator: <u>http://en.wikipedia.org/wiki/Opto-isolator</u>
- vii. Solid State Relay: <u>http://en.wikipedia.org/wiki/Solid-state</u>relay
- viii. UPS: <u>http://www.epanorama.net/links/psu.html</u>
 - ix. PLC: <u>http://www.epanorama.net/links/automation.html#plc</u>
 - http://en.wikipedia.org/wiki/Programmable_logic_controller
 - x. Motors: <u>http://www.epanorama.net/links/motorcontrol.html</u>
 - xi. AC/DC motors: <u>http://en.wikipedia.org/wiki/Motor</u>
- xii. Stepper motor: <u>http://en.wikipedia.org/wiki/Stepper_motor</u>
- xiii. Universal moror: <u>http://en.wikipedia.org/wiki/Universal_motor</u>
- xiv. Servo motor: <u>http://en.wikipedia.org/wiki/Servomotor</u>
- xv. Synchro: <u>http://en.wikipedia.org/wiki/Synchro</u>
- xvi. Induction heating: <u>http://en.wikipedia.org/wiki/Induction_heating</u>
- xvii. Dielectric heating: <u>http://en.wikipedia.org/wiki/Dielectric_heating</u>

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Shri T. P. Chanpura, Lecturer (EC), Government Polytechnic, Ahmedabad
- Shri T. R. Parmar, Lecturer (EC), Government Polytechnic, Palanpur
- Shri S. G. Valvi, Lecturer (EC), Government Polytechnic for Girls, Surat
- Shri N. M. Rindani, Lecturer (EC), Government Polytechnic, AVPTI, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof.** (Mrs.) Anjali Potnis, Assistant Professor, Department of Electrical and Electronics Engineering.
- **Prof.** (Mrs.) Susan S. Mathew, Associate Professor, Department of Electrical and Electronics Engineering.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: CIRCUIT DESIGN TOOLS (Code: 3341106)

Diploma Programmes in which this course is offered	Semester in which offered
Electronics and Communication Engineering	4 th Semester

1. RATIONALE

In the era of miniature electronic gadgets and automation, it is required to have electronic circuit simulation for better design and cost effective PCB layout for better performance. This course aims to teach students about how to simulate the electronic circuit and how to design PCB layout of given circuit using available circuit simulation and PCB layout design tools (free or licensed). This course helps the student to simulate the circuit and develop complete hardware circuit on PCB.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- Simulate/test the electronic circuit using circuit Simulation Tools.
- Fabricate PCB layout of electronic circuits by using PCB layout design tools

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Compare different circuit simulation and PCB layout design software.
- ii. Make schematic electronic circuits in the software
- iii. Simulate simple electronics in the software
- iv. Design and develop layout of PCB using PCB layout design tool with fabrication (free or licensed).

Teaching Scheme		Total		Examination Scheme				
(In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	100
0	0	4	4	0	0	40	60	

4. TEACHING AND EXAMINATION SCHEME

5. COURSE DETAILS

Note: There is no exclusive input sessions for theory in this course, however following theory should be discussed during practice sessions. There is no theory based exams.

Unit	Major Learning Outcomes	Topics and Sub-topics
	(outcomes in cognitive domain)	
Unit – I Circuit Simulation and	1a. State the features of different circuit simulation tools (Open source or licensed) used for electronic circuit simulation	1.1 Circuit simulation software.
PCB Design Software	 1b. List different PCB layout design tools (Open source or License) used for PCB layout design. 	1.2 PCB layout design software.
Unit – II Design of Schematic Electronic	2a. Define the general terms used in circuit simulation software.	2.1 Wire, bus, junction, probe, voltage source, current source, and ground etc. used in circuit simulation software.
Circuits Using	2b. Create new projects and save it.	2.2 Create new project, and schematic file.
Software	2c. Use 'Search', 'add' and 'create' commands of the simulation software.	2.3 Search, add and create new electronic part.
	2d. Assemble electronics circuit using circuit simulation software.	2.4 Edit, Connect or wire the circuit.
Unit – III Simulation of Electronic	3a. Simulate and test the RC, LC, or RLC based electronic circuit using circuit simulation software.	3.1 Test RC, LC or RLC based electronic circuit.
Circuits	3b. Simulate and test the diode, transistor or MOSFET based electronic circuit using circuit simulation software.	3.2 Test diode, transistor or MOSFET based electronic circuit.
	3c. Simulate and test the analog or digital IC based electronic circuit using circuit simulation software.	3.3 Test analog/digital IC based electronic circuit.
6	3d. Find the transient analysis of RC, LC, or RLC based circuit using circuit simulation software.	3.4 Transient analysis of RC, LC, or RLC based electronic circuit.
	3e. Find the bias point analysis of diode, transistor or MOSFET based circuit using circuit simulation software.	3.5 Bias point analysis or characteristic curve of diode, transistor or MOSFET based electronic circuit.
	3f. Find the transient analysis of diode, transistor or MOSFET etc. based circuit using circuit simulation software.	3.6 Transient analysis of diode, transistor or MOSFET etc. based electronic circuit.

Unit	Major Learning Outcomes (outcomes in cognitive domain)	Topics and Sub-topics
	3g. Find the frequency response (AC Analysis) of RC, diode, transistor etc. based electronic circuit using simulation software.	3.7 Frequency response (AC Analysis) of RC, diode, and transistor etc. based electronic circuit.
	3h. Find the frequency response (AC Analysis) of analog/ digital IC based circuit using simulation software.	3.8 Frequency response (AC Analysis) analog/ digital IC based electronic circuit.
Unit – IV PCB Layout Design	4a. Identify the terms net list file, back annotation, bill of material, foot print, PTH, track width, mil, etc. used in PCB layout design software.	4.1 Net list file, back annotation, bill of material, foot print, PTH, track width, mil, etc.
	4b. Transfer an electronic circuit to PCB layout design software.	4.2 Transfer circuit to PCB layout
	4c. Search, add and create footprint of different electronic components used in PCB layout design software.	4.3 Search, add and create footprint
	4d. Place, route and generate the layout of given circuit using manual or auto routing using PCB layout design software.	4.4 Place, route and generate PCB Layout
Unit – V PCB Fabrication Techniques	5a. Follow the PCB manufacturing steps.	5.1 Drawing and printing layout on board, photo etching process, masking process, etc.
reeninques	5b. Undertake Different PCB manufacturing techniques.	5.2 PCB manufacturing techniques

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS

Not Applicable

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Approx. Hrs. required
1	Ι	Evaluate different Circuit simulation tools for Circuit Simulation (Presentation)	02
2	Ι	List and compare different PCB layout design tools used for PCB Layout Design (Presentation)	02
3	II	Create and save new schematic file with Project using circuit simulation software.	02
4	II	Use different options like wire, Bus, junction, AC and DC voltage source, current source, probe, Pulse generator, ground, probe etc. of circuit simulation software library.	02
5	II	Search, create and add the electronic component to the schematic file from the library used in circuit simulation software.	02
6	II	Connect the electronic circuit using Place and route method used in circuit simulation software.	02
7	Π	Connect, simulate and test the RC, LC, and RLC based electronic circuit using circuit simulation software.	02
8	II	Connect, simulate and test the Diode, Transistor, MOSFET based electronic circuit using circuit simulation software.	02
9	II	Connect, simulate and test IC based electronic circuit using circuit simulation software.	02
10	III	Calculate the Bias point and verify V-I characteristic (DC Analysis) curve of given diode or transistor based circuitry using circuit simulation software.	02
11	III	Draw the Transient analysis curve of a given diode circuit using circuit simulation software.	02
12	III	Draw the Transient analysis curve of a given transistorized electronic using circuit simulation software.	02
13	III	Draw the Transient analysis curve of a given Analog IC based electronic circuit using circuit simulation software.	02
14	III	Draw the Frequency response (AC Analysis) curve to check the functionality of RC, LC and RLC based circuit using circuit simulation software.	02
15	ш	Draw the Frequency response (AC Analysis) curve to check the functionality of Transistorized based circuit using circuit simulation software.	02
16	Ш	Draw the Frequency response (AC Analysis) curve to check the functionality of analog IC based circuit using circuit simulation software.	02
17	III	Use the following options netlist file, back annotation, Bill of material, single layer PCB, double layer PCB, PTH, footprint, track width, mil, etc. and develop a complete project.	04
18	IV	Synthesize and Transfer an electronic circuit using circuit simulation software to the PCB layout design software.	02
19	IV	Search, create and add footprint of different electronic components to the PCB layout design file .	02
20	IV	Synthesize the PCB Layout of the given RC, RLC, diode or transistor based electronic circuit with manual and auto routing technique using PCB design software.	02

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Approx. Hrs. required
21	IV	Synthesize the PCB Layout of given analog or digital IC based electronic circuit with manual and auto routing technique using PCB design software.	06
22	V	Synthesize complete PCB for a given electronic circuit (mini project)	04
23	V	Synthesize complete PCB through following Fabrication Techniques step by step.	06
		Total	58

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Prepare PCB layout of a given circuit on butter paper (Mini Project).
- ii. Transfer the layout from Butter paper to Copper claded board (Paper Phenolic or glass epoxy material etc.)
- iii. Industrial Visit to any PCB manufacturing Industry.
- iv. Prepare PCB layout using circuit simulation software.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Expert Lecture from PCB manufacturing industry personal
- ii. Videos of PCB making steps and different PCB making Techniques
- iii. Install "everyCircuit" Android application & demonstrate it using "BlueStack" on computerUse_link:http://www43.zippyshare.com/d/66433193/559625/EveryCircuit %20v2.00%20apkmania.com.rar

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book/user manual	Author	Publication
1.	Printed Circuit Boards: Design and Technology	Bossart	TMH, New Delhi 2008 or latest edition
2.	Multisim user manual	National Instruments	www.ni.com
3.	Ultiboard user manual	National Instruments	www.ni.com
4.	Orcade online manual	Cadence	www.cadence.com

B) List of Major Equipment/ Instrument/Software with Broad Specifications

i.	Multisim	(Academic Version or Licensed Version)
ii.	UltiBoard	(Academic Version or Licensed Version)
iii.	Orcade	(Student Version or Licensed Version)
iv.	Express PCB	(Free Version or Licensed Version)
v.	Circuit Maker	(Free Version or Licensed Version)
vi.	Tinapro	(Free Version or Licensed Version)
vii.	EaglePCB Design	(Free Version or Licensed Version)
	Software	
viii.	FreePCB	(Free Version)

C) List of Software/Learning Websites

- <u>www.ni.com</u> (Multisim and Ultiboard Academic version)
- <u>www.cadence.com</u> (Orcade Student version)
- <u>www.youtube.com</u> (PCB Manufacturing Videos)

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Shri S. N. Sampat, I/C Head (EC) Government Polytechnic, Gandhinagar.
- Shri K. J. Pithadiya, Lecturer (EC), BBIT, Vallabh Vidhyanagar
- Shri G. V. Parmar, Lecturer (EC), Government Polytechnic, Jamnagar
- Shri K. V. Chhaniyara, Lecturer (EC), AVPTI Rajkot.

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof.** (Mrs.) Anjali Potnis, Assistant Professor, Department of Electrical and Electronics Engineering.
- Prof. (Mrs.) Susan S. Mathew, Associate Professor, Department of Electrical and Electronics Engineering.