GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MICROCONTROLLER (COURSE CODE: 3351101)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	5 th Semester

1. RATIONALE

Microcontroller is the sole of all embedded electronic equipments and is used in most of the areas of electronics. They include product ranges from tiny consumer electronic products to complex industrial process controllers. A diploma engineer needs to maintain such systems. Programming practices will further help the students to develop indigenous microcontroller based applications. Hence this course is designed to achieve the above.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain microcontroller based equipments/system.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify features of various microcontroller
- ii. Select appropriate microcontroller for different application
- iii. Interface microcontroller with hardware for given application
- iv. Write and execute assembly language programs(software) for given application
- v. Develop small microcontroller based applications.

4. TEACHING AND EXAMINATION SCHEME

Tea	ching Scl	heme	Total	Examination Scheme								
	(In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks		Theory Marks		Prac Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	РА					
4	0	2	6	70	30	20	30	150				

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment

5. COURS	SE DETAILS	
Unit	Major Learning Outcomes (outcomes in Cognitive Domain)	Topics and Sub-topics
Unit – I. Introduction of Microcontro llers	 1a. Describe functions of each block. diagram of generic digital computer 1b. Describe common features of Microcontrollers 	 1.1 Block diagram of microcontroller : CPU, input device, output device, memory and buses 1.2 common features of Microcontrollers : On-chip Oscillator, program and data memory, I/O Ports, Watchdog- timer reset, SFRs, Timers, Counters, Interrupts, ADC, PWM
	1c.Differentiate between microprocessor and microcontroller1d.Describe Evolution of Microcontrollers	1.3microprocessor and microcontroller1.4Hierarchy of microcontrollers
	1e. Explain various architectures of microcontroller	1.5 architectures of microcontroller Harvard, Von Neumann RISC and CISC
	1f. Describe applications of microcontrollers	1.6 Applications: House hold , Communication, Office equipment and industrial automation
Unit– II 8051 Hardware	2a Explain functions of each block of 8051microcontroller	 2.1 Blocks of Microcontroller 8051: ALU, PC, DPTR, PSW, Internal RAM, Internal ROM, Latch, SFRs, General purpose registers, Timer/Counter, Interrupt, Ports
	2bExplain Pin Diagram of80512cDistinguish of clock, reset	2.2 Functions of each pin of 80512.3 Clock circuit, reset Circuit ,
	and machine cycle of 8051 with the help of relevant waveform 2d Explain Memory organization of 8051	 phase and state in machine cycle of 8051 2.4 Memory organization of 8051: Program and Data memory Map, External Memory Addressing and
6	2e Differentiate Stack , Stack Pointer and stack operation	Decoding Logic of 8051 2.5 Stack, Stack Pointer and Stack operation
	2f Describe modes of operation of Timers/Counters	2.6 Timers/Counters logic diagram and its operation in various modes
	2gExplain function and structure of I/O Ports2hDescribe Serial communication	 2.7 I/O Ports structure: Port 0, Port 1, Port2, Port 3. 2.8 Serial Communication in various modes
	2i Justify need of Interrupt Mechanism	2.9 Interrupt structure, vector address, priority and operation

Unit	Major Learning Outcomes	Topics and Sub-topics		
	(outcomes in Cognitive Domain)			
	2j Differentiate various types			
	of Interrupts			
	2k Explain various controlling	2.10 Modes of operation: Power		
	modes of 8051	down and idle mode		
Unit– III	3a Classify addressing modes	3.1 Addressing Modes :		
8051	of 8051 with example	Immediate, Register, Direct, Indirect,		
Programmi		Indexed, Relative and bit addressing		
ng	3b Sort the Instruction set of	3.2 Instruction set :Data Transfer,		
0	8051as per functions performed by	Arithmetic, Logical, Branching, and		
	them	Machine Control		
	3c Explain following	3.3 Looping, Counting, sorting		
	Programming concept: Looping,	and Indexing		
	Counting and Indexing			
	3d Develop simple programs to	3.4 Data manipulation, Masking,		
	perform the following operations:	Stack operation, Conditional		
	Data manipulation, Masking, Stack	programming		
	operation, Conditional execution			
	3e Explain functions of Timer/	3.5 Configuration and		
	Counters and its application	programming of Timer/Counter		
	3f Describe modes of timers	using SFRs: TMOD, TCON, THx,		
		TLx.		
	3g Explain the interrupt	3.6 Configuration and		
	mechanism with the help of suitable	programming of interrupts using		
	example	SFRs: IE,IP		
	3h Explain I/O Port	3.7 Configuration and		
	Programming	programming of I/O Port :		
		P0,P1,P2,P3		

Unit	Major Learning Outcomes (outcomes in Cognitive Domain)	Topics and Sub-topics
Unit–IV	4a Interface Input Devices with	4.1 Switch: Pushbutton, DIP.
8051	8051 microcontroller	Thumbwheel, Tilt
Interfacing	4b Interface Output devices	4.2 Relay,LED,7 segment
C	with 8051 microcontroller	LED,LCD
	4c Interface ADC with 8051	4.3 ADC0804
	microcontroller	
	4d Interface Analog Input	4.4 Temperature sensor LM35
	devices with 8051 microcontroller	
	4e Interface DAC with 8051	4.5 DAC0808, ADC0804,
	microcontroller	<u> </u>
	4f Interface Analog Output	4.6 Damper Control, Hoper
	devices with 8051 microcontroller	Control
	4g Interface actuator with 8051	4.7 DC Motor, Stepper motor
	microcontroller	C
	4h Interface PC with 8051	4.8 Serial communication using
	microcontroller	MAX 232, Hyperterminal
	4i Describe functions of	
	MAX232	
Unit-V	5a List Various 8051 Applications	5.1 Application of microcontroller in
8051		various field
Applications		
	56 Room Temperature Indicator	5.2 Using LM35, ADCC0804,
		Microcontroner, / segment LED
	5c Battery voltage logging system	5.3 Using Analog Multiplexer
	•. •.	4051,ADC0804,Microcontroller,
		7 segment LED,MAX232
	5d GSM based Security Application	5.4 Using GSM Modem,
		Microcontroller, Relay, Switches
	5e RPM Meter	5.5 Using Photo interrupter,
		Microcontroller, 7 Segment LED
	5f Applications based on RTC	5.6 Using Pushbutton switches,
	DS1307	Microcontroller, Relay, NVRAM

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Introduction of Microcontrollers	10	04	04	04	12
II	8051 Hardware	16	08	06	04	18
III	8051 Programming	12	06	05	05	16
IV	8051 Interfacing	10	04	06	04	14
V	8051 Applications	8	02	02	06	10
	Total	56	24	23	23	70

Legends: R = Remember U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S No	Unit	Practical Exercises	Approx				
5. NO.	No.	(outcomes in Psychomotor Domain)	Hours.				
1	Ι	Use 8051 Simulation tool	2				
2	Ι	Test and verify the features of 8051 Trainer Kit	2				
3	II	Write and execute assembly language programs based on Data	2				
5		transfer Instructions	2				
	II	Develop assembly language programs based on Arithmetic					
4		Instructions (e.g. 8 bit Addition, Subtraction, Multiplication,	2				
		Division)					
5		Develop Assembly Language Programs based on Logical	2				
	TT	Instructions (And, Or etc.)					
6		Develop Assembly Language Programs based on Branch	2				
	п	Develop Assembly Language Programs based on Looping					
7		Counting and Indexing concept	2				
	Ш	Develop Assembly Language Programs to introduce delay					
8		(e.g.1ms Delay) using Timer/Counter	2				
9	III	Develop Assembly Language Programs for Interrupts	2				
10	III	Develop Programs for serial communication	2				
11	IV	Develop a program to interface LED with 8051	2				
12	IV	Develop a program to interface 7 segment Display with 8051	2				
13	IV	Develop a program to Interface 8 bit DAC with 8051	2				
14	IV	Develop a program to interface a DC Motor with 8051	2				
15	V	Develop a program to interface LCD Module with 8051	2				
16	V	Develop a 4 bit binary counter with 8051 and display out put on	2				
10		LCD	2				
17	V	Develop a program to interface a Stepper Motor with 8051	2				
18	V	Develop a data acquisition system using ADC0804 and	2				
10	¹⁸ Microcontroller ²						
Total Ho	ours (perf	form practical form every unit so that 28 hours are utilized)	36				

Note: It is preferable to use 8051 Trainer kits rather than Simulation tools for better hands on practice.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities:

- i. Prepare journals based on practical performed in laboratory.
- ii. Prepare chart to represent the block diagram of different interfacing chips.
- iii. Develop a practical application using 8051 Microcontroller
- iv. Prepare ISP board of 89V51RD2Hxx with all ports available as connector
- v. Prepare/Download a dynamic animation to illustrate the following
 - Data transfer operation
 - Keypad Interfacing
 - LCD Interfacing
 - DC Motor Interfacing

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange visit to relevant industry.
- ii. Show video lectures on Microcontroller Applications with help of internet.
- iii. Assemble level programming practices on simulators (free downloadable).

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Microcontrollers : Principles And Applications	Pal Ajit	EEE, PHI ,New Delhi,(Latest edition)
2.	The 8051 Microcontrollers: Architecture, Programming and Applications	Rao Dr. K Uma	Pearson Education India, New Delhi,(Latest edition)
3.	The 8051 microcontroller and embedded systems	Mazidi Ali, Muhammad Mazidi Gillispie Janice	PHI, New Delhi,(Latest edition)
4.	The 8051 Microcontroller: Architecture, Programming, and Applications	Kenneth Ayala J.	Thomson Delmar learning,(latest Edition)
5.	The 8051 Microcontroller,	Mackenzie	Pearson Education India, New Delhi,(Latest edition)
6.	Programming and customizing the 8051 microcontroller	Predko Michael	McGraw-Hill, International edition

B) List of Major Equipment/ Instrument with Broad Specifications

- i. Microcontroller 8051 trainer Kit
- ii. 8051 Simulator software (Free downloadable)
- iii. Computer System(p-IV and latest version)
- iv. Peripheral Interfacing Trainer kits

C) List of Software/Learning Websites

- i. www.academia.edu
- ii. www.learners TV.com
- iii. www.nptel.iitm.ac.in
- iv. www.8052.com

- v. http://www.slideshare.net/aismahesh/memory-8051
- vi. http://www.intorobotics.com/8051-microcontroller-programming-tutorialssimulators-compilers-and-programmers/
- vii. http://electrofriends.com/articles/electronics/microcontroller-electronicsarticles/8051-8951/80518951-microcontroller-instruction-set/
- viii. http://www.ikalogic.com/part-1-introduction-to-8051-microcontrollers
 - ix. http://www.edsim51.com
 - x. http://www.mikroe.com/chapters/view/64/chapter-1-introduction-tomicrocontrollers/
 - xi. http://www.8051projects.net/download-c4-8051-projects.html
- xii. http://cse.iitkgp.ac.in/~soumya/embcs/the-8051-microcontroller-0314772782.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

عريص

- Prof. T P Chanpura, Sr. Lecturer (EC) ,Government Polytechnic Ahmedabad
- Prof. D H Ahir, Sr.Lecturer (EC), Government Polytechnic Rajkot
- Prof. N M Rindani, Sr.Lecturer (EC) ,AVPTI Rajkot
- **Prof. N B Shah**, Sr.Lecturer (EC), Government Polytechnic Vadnagar
- Prof. Krunal Pithadia, Lecturer (EC), B & B Polytechnic Vallabh Vidhyanagar

Coordinator and Faculty Members from NITTTR Bhopal

• **Prof.** (Mrs.) Anjali Potnis, Department of Electrical and Electronics Engineering.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MOBILE COMMUNICATION (COURSE CODE: 3351102)

Diploma Programme in which this course is offered	Semester in which offered		
Electronics and Communication Engineering	5 th Semester		

1. RATIONALE

The cellular mobile communication has seen an exponential growth over the years. Not only that, but there are different technologies such as GSM and CDMA with their variations and the 4th generation mobile technology is the latest one. This scenario demands the need for more skilled technicians for operation, maintenance and servicing of mobile cellular systems. This course gives the opportunity to the students to learn the fundamentals of these technologies which they will find in the workplace. Hence this course is designed to maintain various types of mobile communication systems.

2. LIST OF COMPETENCY (Programme outcome according to NBA terminology)

The course content should be taught and with the aim to develop different types of skills So that students are able to acquire following competency:

• Maintain mobile communication systems

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify different standards of mobile communication systems.
- ii. Maintain Global System for Mobile (GSM) systems.
- iii. Troubleshoot GSM mobile handsets.
- iv. Test the functionality of various modules of CDMA cellular systems.
- v. Test the functionality of various modules of 4G systems.

4. **TEACHING AND EXAMINATION SCHEME**

Те	Teaching Scheme Total E		Examination Scheme					
	(In Hour	·s)	Credits (L+T+P)	Theory Marks		heory Marks Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150
4	0	2	6	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment.

T 1	Major Learning Outcomes	7	Forming and Such tarning
Unit	(outcomes in cognitive domain)		opics and Sub-topics
Unit – I	1a. Describe cellular communication	1.1 C	Cellular communication
Fundamenta	Standards -1G, 2G and 3G.	S	standards-1G, 2G and 3G
l of Cellular	1b. Explain the Basic cellular concept and	1.2 E	Basic cellular concept and
Communicat	cellular system	c	ellular system
ion	1c. Explain need of various types of	1.3 T	Type of Cell:
	cell shape.	1	macro, micro, Pico,
	1d. Explain macro, micro, Pico,	S	Selective and umbrella cell.
	Selective and umbrella cell.		
	Ie. Calculate GSM user capacity using	1.4 C	Cluster concept and
	cluster concept.		requency reuse
	If. Explain frequency reuse planning.	1.5 (JSM capacity
	Ig. Discuss the impact of Co- channel	1.6 C	Co-channel and adjacent
	and adjacent channel interference.	C	hannel interference
	Ih. Explain the fixed, dynamic and hybrid	1.7 C	channel assignment
	channel assignment schemes.	S	trategies
	1i. Differentiate cell splitting and cell	1.8 E	Enhancing coverage and
	sectoring.	c	apacity of cellular system:
		с	ell splitting and cell
		S	ectoring.
	Ij. Define handoff	1.9 F	landoff : soft and hard,
	IK. Differentiate hard and soft, intra and	11	nter and intra system
	Intersystem handoff.	1 101	A-14:-1
	II. Explain Frequency divisions,	1.10N	TDMA TDMA and CDMA
	Division Multinle Access (TDMA), Time	r c	DMA, IDMA and CDMA
	1m. Compare Code Division Multiple		Space Division Multiple
	Access (CDMA) and Space Division	F	Access (SDMA)
	Multiple Access (SDMA)		
∐nit_ II	2a Describe functions of various blocks	210	GSM architecture
GSM-	of GSM system	2.1 0	
Global	2b. List GSM, 900 specifications	2.2 0	GSM 900 system
System for		S	pecification
Mobile	2c. Discuss the GSM traffic channel and	2.3 0	GSM channel types:
communicati	Control channel.	Г	Traffic, control
on	2d. Explain Frequency correction control		
	channel(FCCH), Random access		
	Control channel (RACH), Access		
	Grant channel(AGCH)		
	2e. Discuss GSM frame structure	2.4 0	GSM burst and frame
		S	tructures
	2f. Describe location updating procedure.	2.5 0	GSM call Procedure
	2g. Explain call origination (mobile to		
	landline), call termination (landline to	1	
	mobile) and mobile to mobile call		
	with the help of line diagram.		

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	2h Explain frequency hopping	2.6. Erequency hopping: East
	2i. Describe how power control is	and Slow
	achieve for GSM	2.7 Power control in GSM
	2j. Explain block diagram of signal	2.8 Signal processing in GSM
	processing in GSM	
	2k. Describe working of GSM speech	2.9 GSM speech codec
	codec.	-
	21. Explain Gaussian minimum shift	2.10 GSM Modulation
	keying (GMSK) modulation and	Techniques: GMSK
	demodulation technique.	<u>_</u>
	21. Explain functional importance of	2.11 GSM Identifier:
	IMSI, IMEI, MSISDN, TMSI,	IMSI,IMEI,TMSI,MSISDN,
TT •/ TTT	MSRN, LAI and BSIC.	
Unit–111 Mobile	ba. Explain the block diagram of mobile	3.1 Mobile nandset: block
Handsot	2h Explain the working principle of	alagram
Hanuset	baseband section	5.2 Baseband section
	3c. Explain the function of digital signal	3.3 Digital signal processor
	processing used in mobile hand set.	used in mobile hand set
	3d. Describe working function of	3.4 Charging control section
	charging control section	· · · · · · · · · · · · · · · · · · ·
	3e. Explain types of batteries used for	3.5 Batteries
	mobile communication and their	
	importance	
	3f. Differentiate various types of	3.6 Memories
	memories use in mobile handset	
	3g. Explain the subscriber identity	3.7 SIM card and SIM card
	module(SIM) pin connection	interface
	3i. State the general faults occurring in	2.8. Conoral faults and fault
	mobile handset(GSM)	finding procedures
	3 Explain the fault finding procedure in	finding procedures
	mobile handset	
	3k. Explain the effect of radiation hazards	3.9 Radiation hazards due to
	due to mobile and SAR.	Mobile, SAR
Unit– IV	4a. Explain the concept of spread	4.1 Spread spectrum technique
Spread	spectrum techniques.	and Applications
spectrum	4b. Describe advantages of CDMA.	4.2 Advantages of CDMA
	4c. State the criteria and application of	
	spread spectrum.	
	4d. Explain the PN code generator and PN	N 4.3 Spreading codes (PN and
	code detector.	waish code): generation
	He. Explain waish code generator and Walsh code	and detection
	waish code.	

Unit	Major Learning Outcomes (outcomes in cognitive domain)	Topics and Sub-topics
	 4f. Explain working of DSSS transmitter and receiver. 4g. Explain working of FHSS transmitter and receiver with the help of block diagram. 	 4.4 Types of spread spectrum technique DSSS- Direct sequence spread spectrum FHSS- Frequency hopping spread spectrum
	4h. State need for power control in mobile communication.4i. Differentiate forward and reverse power control	4.5 Power control
	 4j. Explain channel capacity of CDMA 4k. Describe mode of call processing in CDMA 	4.6 Channel capacity4.7 Call Processing
Unit-V WCDMA and 4G aspects	 5a. Explain working of GPRS with the help of suitable block diagram. 5b. List class of GPRS handset. 5c. State the application of GPRS 	5.1 GPRS- General Packet Radio Service: Block diagram, applications
uspeets	5d. Explain concept and transmission scheme in EDGE.	5.2 EDGE- Enhanced Data rate for Global Evolution
	5e. Describe high speed downlink packet access.	5.3 HSDPA
	 5f. Describe long term evolution and all IP networks 5g. Explain the OFDM with the help of suitable block diagram 	 5.4 4th Generation technology: OFDM, MIMO 5.5 Software define radio
	5h. Explain MIMO system.5i. Discuss software define radio.	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	it Unit Title Teaching Distribution of T			f Theory	v Marks	
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Cellular Communication	10	02	06	04	12
II	GSM-Global System for Mobile	16	06	08	04	18
	Communication					
III	Mobile Handset	10	02	04	08	14
IV	Spread spectrum	10	04	06	04	14
V	WCDMA and 4G aspects	10	04	06	02	12
	Total	56	18	30	22	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Revised Bloom's taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills *(outcomes in psychomotor and affective domain)* so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty members should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.No.	Unit No.	Practical /Exercises (outcomes in psychomotor)	Approx. Hrs.
1	Ι	Analyze cluster and frequency reuse technique	2
2	II	Analyse GSM signal (signal spectrum) using spectrum analyzer	2
3	II	Measure network information using android applications like signal strength checker, network monitor, network signal info.	2
4	II	To explore various blocks and working of GSM mobile phone	2
5	II	Analyse the waveforms of MSK and GMSK modulation schemes using Matlab	2
6	II	To demonstrate general fault finding procedure in GSM mobile handset	2
7	П	To demonstrate blue tooth applications using btprox software	2
8		To Measure the PWM signal on the Vibrator motor and on the buzzer of mobile	2
9	ш	To code digital message with Direct Sequence SS system using Matlab or trainer board	2
10	III	To code digital message with Direct Sequence SS system using Matlab or trainer board	2
11	IV	To generate and observe PN signal using software or trainer board	2
12	IV	To use mobile as GPRS modem through cable & via Bluetooth.	2
13	V	To study and observe OFDM signal using software codes	2
14	V	To transmit a message using at command from microcontroller to a mobile (Serial communication)	2

S.No.	Unit No.	Practical /Exercises (outcomes in psychomotor)	Approx. Hrs.	
15	V	Introduction to WML script and execute a simple script in mobile browser.	2	
Total H	Total Hours (perform practical form every unit so that 28 hours are utilized) 30			

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Industrial visit to BTS site or MSC.
- ii. Workshop on mobile repair by service technician of any mobile repairing centre.
- iii. To explore websites to understand repairing of various mobile handsets.
- iv. To design and develop GSM/GPS and other wireless technology based working models/projects.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange visit to nearby BTS/BSC/MSC of any service provider.
- ii. Power point presentations with visuals.
- iii. Organise workshop for repairing of mobile hand set.
- iv. Arrange expert lectures on latest mobile communication technologies.
- v. Expert video lectures on mobile communication technologies.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books 🥂	Author	Publication
1	Wireless communication	Rapport T.S.	PHI Learning, New
	principle & Practice		Delhi, (Latest Edition)
2	Mobile and Personal	Pandya Raj	IEEE
	Communication System and		
	Servicing		
3	Mobile Communication	Lee C. Y.	Pearson, New Delhi
			(Latest Edition)
4	Mobile Cellular	Lee C.Y.	TMH, New Delhi,
	Telecommunication System		(Latest Edition)
5	Wireless communication	Dalal Upena	OXFORD New Delhi,
6	Advance Mobile Repairing	Pandit Sanjib	BPB, (Latest Edition)
7	Mobile Communication	Schiller	PHI Learning, New
	2		Delhi, (Latest Edition)
8	Related IEEE/IEE publication		

B) List of Major Equipment/Instruments with Broad Specifications

i.	Oscilloscope / storage oscilloscope	Dual channel 100 MHz
ii.	Spectrum analyzer	• Up to 2-3 GHz capture bandwidth
iii.	GSM Trainer	GSM wireless standards
iv.	CDMA Trainer	CDMA standards

v.	Mobile Handset Trainer	• GSM based handset trainer with fault creation and test points.
		•
vi.	Modulation technique Trainer	On board Modulation/Demodulation
	board	(GMSK) for mobile system
vii.	PN sequence generator training	Generate different PN Data
	board	

C) List of Software/Learning Websites

oves

- i. www.nptel.iitm.ac.in
- ii. <u>www.academia.edu</u>
- iii. www.larnerstv.com

11.	COURSE CURRICULUM DEVELOPMENT COMMITTEE
	Faculty Members from Polytechnics

- **Prof. S.J. Chauhan,** HOD, (EC), Govt. Polytechnic Rajkot.
- **Prof. R.B. Shah**, Sr. Lecturer (EC), Govt. Polytechnic Ahmedabad.
- **Prof. K.K. Shah**, Sr. Lecturer, (EC), Govt. Polytechnic Rajkot.
- **Prof. A. J. Prajapati**, Sr. Lecturer, (EC), B.S. Patel Polytechnic Kherva.

Coordinator and Faculty Members from NITTTR Bhopal

• **Prof. (Mrs.) Anjali Potnis,** Assistant **Professor, Department of Electrical and Electronics Engineering.**

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MICROWAVE & RADAR ENGINEERING (COURSE CODE: 3351103)

Diploma Programme in which this course is offered	Semester in which offered	
Electronics and communication Engineering	5 th Semester	

1. RATIONALE

The knowledge of microwave devices is essential for electronics and communication engineering diploma holders and they need to assimilate it in order to maintain Microwave devices used in Telecommunication Industry. Hence, the basic knowledge of microwave signal generation, propagation, amplification and measurement is vital. This course has been designed to achieve the diploma engineer will maintain microwave devices, components and accessories used in telecommunication industry.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Install and Maintain microwave devices, components and accessories used in telecommunication field.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Distinguish Electromagnetic wave propagation through reflections from voltage and current transmission.
- ii. Analyze performance of microwave components from field point of view.
- iii. Maintain microwave components and Set up of microwave bench for optimum operation.
- iv. Maintain microwave semiconductor devices used to realized amplifiers and oscillators.
- v. Maintain RADAR system as microwave application.

Teaching Scheme		Total	Examination Scheme					
(In Hours)		Credits	Theory Marks		Practical		Total	
			(L+T+P)			Ma	irks	Marks
L	Т	Р	С	ESE	PA	ESE	PA	150
4	0	2	6	70	30	20	30	130

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Major outcomes in cognitive domain)	
Unit – I. Transmission lines and Microwaves	 Describe EM wave frequency bands and spectrum State the strengths and limitations of microwave communication 	1.1 Microwaves: frequency band, EM waves, General applications of microwaves
	 Explain the equivalent circuit of a two wire transmission line. Obtain the general equation for a two wire transmission line. State characteristics of lossless transmission line. Explain impedance matching using stub Using design equations solve example of single stub matching 	1.2 Transmission lines: Parameters, general line equation, lossless line, $\lambda/4$ line, standing waves, VSWR, reflection coefficient, stub matching (single and double), skin effect
Unit– II Microwave Propagation and Components	 2a. Describe propagation of microwaves through waveguide and explain cutoff wavelength. 2b. Differentiate between transmission line and waveguide. 2c. Calculate cut off wavelength, group and phase velocities, characteristics wave impedance of any waveguide parameters 	2.1 Waveguides: Wave propagation through guided medium, reflections of waves
	2d. Distinguish the following: cut off wavelength, group and phase velocities, characteristics wave impedance, TE, TM modes, S Parameters.	2.1 Rectangular waveguide : structure, cut off wavelength, group and phase velocities, characteristic wave impedance, TE,TM modes, field patterns, examples, S Parameters basics
6	2e. Compare the working of rectangular waveguide and circular waveguide.	2.2 Circular waveguide: structure, cut off wavelength, modes, examples, comparison with rectangular waveguide
	 2f. State applications of following microwave components: Tees, hybrid ring, directional coupler, Duplexer, isolator, circulator, cavity resonators 2g. Differentiate E-Plane Tee, H-Plane Tee and magic Tee. 2h. Explain the working of directional coupler, isolator and circulator with 	 2.3 Microwave Components: Tees, hybrid ring , directional coupler , Duplexer , isolator , circulator , cavity resonators

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	 (Major outcomes in cognitive domain) sketches. 2i. Explain working of cavity resonators with sketches. 	
	2j. Describe working of bends, corner, and twist taper with sketches.	2.4 Microwave Accessories: corners and bends, twist and taper
Unit– III Microwave tubes and	3a. Describe the frequency limitation of vacuum tubes at microwave frequency.	3.1 Limitations of vacuum tubes at microwave frequency
measurements	 3b. Explain function of reflex klystron with the help apple gate diagram. 3c. Explain structure and effects of various fields' acts on electron moving in the magnetron tube. 3d. Describe working of Travelling Wave Tube as an amplifier. 3e. Explain π mode oscillation and define frequency pushing and pulling. 3f. Explain two cavity klystron with apple gate diagram. 3g. Describe working of Backward Wave Oscillator. 	 3.2 Microwave tubes amplifiers: Klystron - Two cavity and multi cavity, Travelling Wave Tube 3.3 Microwave tubes oscillators: Reflex klystron, Magnetron, Backward Wave Oscillator
	 3h. Explain microwave power measurement methods. 3i. Explain significance of VSWR measurement. 3j. Explain attenuation measurement methods. 3k. Describe Q measurement technique. 	 3.4 Microwave measurement: power, frequency, wavelength (free space, guided and cutoff), VSWR, attenuation, 'Q'.
	31.Explain hazards due to microwave radiation.	3.5 Microwave radiation hazards: types (HERP, HERO, HERF), and protection from hazards

3

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Major outcomes in cognitive domain)	
Unit–IV	4a. Explain varactor diode's working with	4.1 Microwave diodes:
Microwave	diagrams.	VARACTOR diode,
semiconductor	4b. Describe transfer electron effect using	GUNN diode, TUNNEL,
devices	the energy level diagram for GUNN	PIN diode, IMPATT diode,
	diode.	TRAPATT diode
	4c. Explain the working of GUNN diode	
	as an oscillator.	
	4d. Explain principle, construction,	
	working and application of TUNNEL	
	diode	
	4e. Explain the working of a PIN diode as	
	a switch.	
	4f. Explain the negative resistance	
	principle for IMPATT/TRAPATT	
	diode with sketches.	
	4g. Explain the parametric amplifier with	4.2 Parametric amplifier
	diagrams.	4.3 High electron mobility
	4h. Explain the frequency up and down	transistors
	conversion concepts for parametric	
	amplifier	
	4i. Explain the concept of high electron	4.4 Strip line and micro strip
	mobility transistor / strip line and	circuits
	micro strip circuits in brief.	
	4j. Describe working of RUBY MASER.	4.5 MASER: working
		principle, solid state
		RUBY MASER
Unit-V	5a. Explain basic principle of radar and	5.1 Introduction: Basic
RADAR	sonar.	principle of Radar and
systems	0.1	Sonar
v	5h Using given data for RADAR	5.2 Radar range equation and
	calculate the radar range /minimum	examples factors affecting
	received power / operating frequency	maximum range
	range	international Tenngol
	5c. Obtain the equation for maximum	
	RADAR range	
	5d. Using radar range equation describes	
()	how the parameters affect the	
	maximum range.	
	5e. Explain scanning and tracking	5.3 Pulse radar: block
	methods used in radar communication	diagram, radar antenna and
	5f Explain the working of pulsed radar	scanning and tracking
	with the help of block diagram	methods, Display methods
	5g. Describe display methods used for	
	RADAR.	

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Major outcomes in cognitive domain)	
	5h. Explain the principle of CW Doppler	5.4 CW Doppler radar:
	radar and define blind speed.	Moving target indicator
	5i. Describe the working of MTI radar	radar, blind speed,
	with the help of suitable sketch.	Frequency modulated CW
	5j. Explain how the CW radar used for	radar. RADAR
	range measurement.	applications.
	5k. Compare the pulsed radar and CW	
	radar.	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit	Unit Title Teaching			Distribution of Theory Marks			
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Transmission lines and Microwaves	08	03	03	04	10	
II	Microwave propagation and components	14	08	06	04	18	
III	Microwave tubes and measurement	140	08	06	04	18	
IV	Microwave semiconductor devices	12	02	06	04	12	
V	RADAR systems	08	04	02	06	12	
	Total	56	25	23	22	70	

Legends: R = Remember U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.No.	Unit No.	Practical Exercises (Major outcomes in Psychomotor Domain)	Approx Hrs. Required
1	Ι	Measure open circuit & short circuit parameters for the given length of Transmission line.	02
2	Ι	Measure VSWR & reflection coefficient for given length of transmission line.	02
3	II	Set the microwave bench for optimum frequency operation	02
4	II	Measure the voltage maxima and minima on slotted waveguide and calculate free space, cut off and guided wavelength.	02
5	II	Identify various microwave components in the microwave circuit.	02
6	II	Determine the directivity, insertion loss, and coupling factor for a given directional coupler.	02
7	II	Determine the isolation factor for a given isolator.	02
8	II	Determine the coupling factor and, insertion loss, for a given circulator.	02
9	II	Calibrate the given variable attenuator.	02
10	III	Measure microwave frequency using the given (direct and /or indirect) frequency meter.	02
11	III	Measure VSWR for given microwave loads.	
12	III	Measure attenuation of given attenuator.	02
13	IV	Test different controls and functions of GUNN / KLYSTRON power supply.	
14	IV	Determine the characteristic of microwave crystal diode.	02
15	IV	Test the performance of TUNNEL diode	02
16	V	Investigate the fundamental concepts of Doppler radar	02
17	V	Setup radar kit and tune it for best performance.	02
18	V	Measure speed of a fan using RADAR kit.	02
19	v	Measure the variable speeds of moving objects using Velocity simulator	02
20	V	Measure the speed of a moving object with Doppler radar from different angles.	02
21	V	Calculate the speed of a moving object approaching or receding away from radar from different-different angles	02
22	V	Estimate the size of a moving objects using Radar.	02
23	V	Measure the distance traveled by any object using Radar	02
		Total Hours	46

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Prepare chart showing various microwave components.
- ii. Prepare/Download a dynamic animation to illustrate the following:
 - a. Microwave tubes.
 - b. EM waves propagation.
- iii. Visit a place where waveguides are used for microwave communication.(Such as airport, earth station, Telephone exchange, Microwave link repeater, TV broadcast).

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

Show video/animation films or Power point presentation to explain functioning of various microwave components and Microwave tubes.

10. SUGGESTED LEARNING RESOURCES

S.No.	Title of Books	Author	Publication
1.	Microwave Engineering	Gupta Sanjeev	Khanna Publication, New Delhi (Latest edition)
2.	Electronics communication system	Kennedy George	Tata McGraw hill, New Delhi (Latest edition)
3.	Microwave engineering	Das Annapurna & Das S. K.	Mc. Graw Hill, New Delhi, (Latest edition)
4.	Microwave Devices & Circuits	Liao Samuel Y.	PHI Learning, New Delhi, (Latest edition)
5.	Microwave & RADAR Engineering	Gautam A. K.	S K Kataria Publications, New Delhi, (Latest edition)

A) List of Books

B) List of Major Equipment/ Instrument with Broad Specifications

i.	Transmission line trainer.	
ii.	Gunn / klystron power supply	'X' band
iii.	VSWR meter	Resonated at 01 KHZ
iv.	Microwave bench(Gunn / klystron)	'X' band component.
v.	Microwave accessories	BNC to BNC cables, Main Chords.
vi.	Microwave components	'X' band
vii.	Radar trainer kit	Microwave X band frequency range

C) List of Software/Learning Websites

- i. RF Tool box: MATLAB & SIMULINK:
- ii. http://www.rfmw.org/transmission_lines_and_distributed_systems_transmission_lines_transmission _lines.html
- iii. <u>http://www.rf-</u> <u>mw.org/transmission_lines_and_distributed_systems_transmission_lines_transmission_ lines_video_lectures.html</u>
- iv. www.nptel.ac.in

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- **Prof. M. N. Charel,** HOD (EC), Government polytechnic, Ahmedabad
- Prof. K. R. Vadalia, Sr. Lecturer (EC), Govt. Polytechnic, Rajkot.
- **Prof. K. R. Shah**, Sr. Lecturer (EC), Govt. Polytechnic, Patan.
- **Prof. R. G. Patankar**, Lecturer (EC), Government polytechnic, Gandhinagar.
- **Prof. (Dr). D. R. Bhojani,** HOD (EC), Darshan Institute of Engg. & Tech for Diploma Studies, Rajkot.

Coordinator and Faculty Members from NITTTR Bhopal

• **Prof. (Dr.) (Mrs.) Anjali Potnis, DEEE**, NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: SOFTWARE LAB PRACTICE

(CODE: 3351104)

Diploma Programmes in which this course is offered	Semester in which offered
Electronics and Communication Engineering	5 th Semester

1. RATIONALE

It is the era of customized solutions, where fundamental knowledge of electronics and communication principles along with software support plays important role in the prototype application development. Hence the knowledge of popular industrial software helps the Electronics and Communication Engineering diploma students to maintain systems which are based on hardware and software. Programming practices will further help the students to develop indigenous hardware and software based applications.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop basic concepts and different types of skills so that students are able to acquire following competency:

• Develop and test models of electronic (Analog and Digital) circuits using scientific and technology support software and simulation tools.

3. COURSE OUTCOMES

The practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Simulate and test mathematical and functional aspects of electronics and communication engineering principles using the basic features of software tools.
- ii. Develop script files for analog electronic circuits.
- iii. Develop model using blokset and toolboox functions.
- iv. Simulate and test analog and digital communication circuits using available functions and toolboxes.
- v. Simulate and test Digital electronic circuits using available functions and toolboxes.

Teaching Scheme		Total		Exami	nation Scheme					
(In Hour	s)	Credits (L+T+P)	Theory Marks		Credits Theory M (L+T+P)		Prac Ma	ctical arks	Total Marks
L	Т	Р	C	ESE	PA	ESE	PA	50		
0	0	2	2	0	0	20	30			

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; \mathbf{T} – Tutorial/Teacher Guided Theory Practice; \mathbf{P} - Practical; \mathbf{C} – Credit **ESE** - End Semester Examination; \mathbf{PA} - Progressive Assessment.

5. COURSE CONTENT DETAILS

Note: There is no exclusive input sessions for theory in this course, however following theory should be discussed during practice sessions. There is no theory based exams for this course.

Unit	Major Learning Outcomes	Topics and Sub-topics
	(outcomes in cognitive domain)	
Unit – I Introduction to scientific software(like: MATLAB or SCILAB)	 Ia. Explore the default window basic features, commands and of the scientific and technology support software (like: MATLAB or SCILAB) environment. Ib. Creating, saving and executing a script file Ic. Perform simple arithmetic operations. Id. Creating and perform arrays operations. Ie. Plot the given data using various plot functions. If. Creating and plotting basic signals (Sine, Cosine, Square, Triangle). 	 1.1Default Window view Command ,Figure ,Editor window, help window 1.2On-line help 1.3Input-output 1.4File types 1.5Basic arithmetic and logical operations 1.6Trigonometric and exponential functions operation 1.7Plotting functions
Unit – II Analog Electronics Circuits	 2a.Plot input output characteristics of diode. 2b.Plot input output characteristics of npn Transistor 2c.Simulate and test model for bias stability of transistor. 2d.Simulate and test MOSFET equivalent circuit and plot input output characteristics. 2e.Plot frequency response of Common Emitter Amplifier. 	 2.1Plot the characteristic curves of Linear and nonlinear analog electronic devices. 2.2Simulate and test model /equivalent circuit of analog electronic devices.
Unit – III Introduction to toolbox and blockset library (MATLAB, Simulink)	3a.Creating, saving and executing a model file. 3b.Develop model of rectifiers using blockset. 3c. Develop model of filters using blockset.	 3.1Basic features of blockset library 3.2 Sources : Voltage and current sources ,power supply, RF generators, digital signal generators 3.3Sinks : Display instruments, meters, 3.4 Various functions . 3.5Toolbox related to electronic

Unit	Major Learning Outcomes	Topics and Sub-topics
	(outcomes in cognitive domain)	
		circuits, communication ,and antenna
Unit – IV Analog and Digital Communication	 4a.Develop a software program to plot amplitude modulated-DSB Waveform 4b.Develop a software program to plot amplitude modulated-SSB Waveform 4c.Develop a software program to plot Frequency Modulation Waveform 4d.Develop a software program to plot Phase Modulation Waveform 4a Develop a software program to plot 	4.1 Mathematical equations and functions to represent of analog modulation and demodulation principles
	Low Pass, High Pass, Band Pass and Band Stop filter design and its frequency response using toolbox	parameters to develop analog filter circuits : Low Pass, High Pass, Band Pass and Band Stop Filter
	4f.Develop a software program to plot ASK Modulation Waveform 4g Develop a software program to plot	4.3 Mathematical equations and functions to represent of digital modulation and demodulation
	FSK Modulation Waveform 4h.Develop a software program to plot PSK Modulation Waveform 4i.Develop a software program to plot OPSK Modulation Waveform	principles
Unit – V	5a.Simulate AND, OR, NAND, NOR,	5.1Digital circuit: basic gates,
Digital	XOR, NOT Gates using blocksets	combinational and sequential
Electronics	subtractor	characteristic table, excitation
Circuits using Toolbox and Blocksets	5c.Develop a model of multiplexer and demultiplexer. 5d.Develop a model of D, T and JK Flip-	table and waveforms.
	5e.Develop a model for a 3-bit Up / Down binary counter	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS

Not Applicable

7. **SUGGESTED LIST OF EXERCISES/PRACTICALS**

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical Exercises	Approx. Hrs.
NO.	N0.	(Outcomes' in Psychomotor Domain)	required
		Explore the basic features, commands and general structure of the MATLAB	02
		environment.	
1	т	1. Start and exit the session 2 MATLAP Windows: Figure Editor and command window	
1	1	3 On-line help	
		4.Input-output	
		5.File types	
		Minimum MATLAB Session:	04
		1.Perform arithmetic operations on scalar.	
2	Ι	2.Perform arithmetic operations on arrays.	
		3.Plot and print simple plots using plot functions.	
2	T	4. Creating, saving and executing a script file.	01
3	1	Develop a program to plot waverorms: Sine, Cosine, Square, Imangle	01
4	II N	Develop a program to plot input output characteristics of diode.	01
5		Develop a program to plot input output characteristics of npn Transistor.	01
6	II	Develop a program to plot bias stability of transistor.	01
7	II	Develop a program to plot Frequency response of Common Emitter Amplifier.	01
8	II	Develop a program to plot input output characteristics of MOSFET.	01
9	III	Develop model for various types of rectifiers	02
10	III	Develop model for various types of filters	02
11	IV	Develop a program to plot Amplitude Modulation (DSB) Waveform	01
12	IV	Develop a program to plot Amplitude Modulation (SSB) Waveform	01
13	IV	Develop a program to plot Frequency Modulation Waveform	01
14	IV	Develop a program to plot Phase Modulation Waveform	01
15	IV	Develop a program to plot Low Pass, High Pass, Band Pass and Band Stop Filter design and its Frequency response using toolbox	01
16	IV	Develop a program to plot ASK Modulation Waveform	01
17	IV	Develop a program to plot FSK Modulation Waveform	01
18	IV	Develop a program to plot PSK Modulation Waveform	01
19	IV	Develop a program to plot QPSK Modulation Waveform	01
20	v	Develop model of Multiplexer and Demultiplexer using blockset functions.	02
21	V	Develop model for Addition and Subtraction of 4bit binary	01
22	v	Simulate AND, OR, NAND, NOR, XOR, NOT Gates using blockset	01
23	V	Simulate full adder using Simulink.	01
24	V	Simulate full adder using Simulink for four bit	01
25	, V	Simulate D and JK Flip-flop using Simulink.	01
25	, V	Develop a model for a 3-bit Up / Down binary counter using simulink	01
	•	Total	28

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Revise the concept of electronics and communication from the relevant books.
- ii. Practices various features of MATLAB for developing various types of circuits from the reference books on MATLAB.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

i. Expert Lecture from faculties working on MATLAB.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book/user manual	Author	Publication
1.	Getting started with Matlab	Pratap Rudra	Oxford University Press,New
			Delhi(latest edition)
2.	Matlab in Engineering	Tyagi	Oxford University Press, New
			Delhi(latest edition)
	Engineering	Assi Ali H.	Intech Publication
3.	Education and		
	Research using matlab		
	Essential MATLAB for	Hahn Brian D.	Elsevier publications Ltd.,
4.	Engineers and Scientist	Valentine Daniel T.	Third edition, 2007(or latest
	-		edition)

B) List of Major Equipment/ Instrument/Software with Broad Specifications

- i MATLAB
- ii SCILAB
- iii Computer terminals in networking
- iv Internet connection

C) List of Software/Learning Websites

- i www.mathworks.com
- ii www.learnerstv.com

iiicourses.washington.edu/css457/matlab/learning_matlab.pdf ivwww.ngohaibac.com/how-to-learn-matlab-programming. vwww.matlabtips.com

11. **COURSE CURRICULUM DEVELOPMENT COMMITTEE**

Faculty Members from Polytechnics

- **Prof. S. N. Sampat**, I/C Head (EC) Government Polytechnic, Gandhinagar.
- Prof. M. S. Dave , Sr. Lecturer (EC) Government Polytechnic, Ahmedabad
- **Prof. S. D. Parmar,** Lecturer (EC), Government Polytechnic, Gandhinagar
- **Prof. K. J. Pithadiya**, Lecturer (EC), B & B Polytechnic Vallabh Vidyanagar

Coordinator and Faculty Members from NITTTR Bhopal

•Prof. (Mrs.) Anjali Potnis, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PROJECT-I (COURSE CODE: 3351107)

Diploma Programmes in which this course is offered	Semester in which offered
Electronics & Communication	5 th Semester

1. RATIONALE

provide an opportunity to the students for applying the knowledge and technical skills acquired by identifying real life problem of the industries /research organization / society as a whole and providing it's innovative solution with partial implementation, which is economically and technologically viable.

2. **COMPETENCY**

The IDP-I/UDP-I is to be selected by the students and the problem is to be identified for providing solution under the mentoring of the institute Guide and the Industry mentor to develop following competencies...

- i. Co-creation & Interpersonal abilities
- ii Design & Troubleshooting
- iii Programming/simulation/ debugging skills
- iv Developing PCB design/soldering skills
- v Documentation & Presentation skill

3. Course Outcomes

At the end of the course, student will able to

i. Create familiarity with the industry personnel & industrial environment as well as processes.

ii Survey the related literature.

iii Define the problem and the objectives of the project.

iv Suggest various design alternatives and justification of the selection of the design methodology for the problem solution along with design specifications.

- v Modeling and analysis of the proposed solution.
- vi. Simulate, Design and debugging of the circuit
- vii Partial Implementation of the proposed solution

viii. Develop program logic of the proposed solution

ix. Locate the problem and troubleshoot.

x. Work in team cohesively & effectively

xi Prepare project report having organized documentation.

xii. Prepare & deliver presentation.

xii. Enhance awareness for latest technologies and tools

ix. Visualize the roadmap of the further development.

Tea	ching Sc	heme	Total	Examination Scheme						
(In Hour	s)	Credits (L+T+P)	Theory Marks		Theory Marks		Prae Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA			
0	0	4	04	0	0	40	60	100		

4. Teaching and Examination Scheme

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Stage	Major Learning Outcomes	Topics and Sub-topics
Stage-I	1.a. Interact with the	1.1 Information gathering through
Shodhyatra*	industry/research organization	websites and media.
	personnel	1.2Identification of Industry/research
	1.b. Gather information and	organization
	organise	1.3 Visiting Industry/research
		organization
		1.4 Creating awareness about the
		industrial premises, personnel,
		processes and products
		1.5 Review of literature
Stage-II	2.a. Define & explain Problem	2.1 Defining problem in consultation
Problem	definition	with institute guide & industry mentor
Definition &	2.b. Prepare & submit problem	2.2 Preparing problem definition
Submission	definition	statement in the prescribed format of
		GTU and submit in soft and hard
		copy.
Stage-III	3.a. Conceive and draw General	3.1 Block Diagram of project
Design	block diagram of solution .	3.2 Draw & Develop circuit diagram
Solution	3.b. Develop circuit diagram in	using circuit design softwares/tools
	detail.	3.3 Development of algorithm and
	3.c. Write algorithm and draw	flowchart if applicable.
	flowchart	
Stage – IV	4.a. Design PCB Layout	4.1 PCB Layout preparation using
Hardware/sof	4.b. Simulate circuit	software tools
tware	4.c. Assemble circuit	4.2 Circuit simulation
simulation	4.d. Test the Hardware circuit	4.3 Partial implementation using
and partial	4.e.Troubleshoot the hardware	Breadboard or General purpose PCB
Implementati	circuit.	4.4 Test and troubleshoot hardware if
on		applicable.
Stage – V	5 a Prenara project report	5 1 Prepare project report as per GTU
Documentati	5 h Prepare PPT presentation	guideline
Documentati	5.0. Frepare FFT presentation	guidenne.

Stage	Major Learning Outcomes	Topics and Sub-topics
on &	5.c. Present project work	5.2 Prepare PPT and present as per
Presentation		schedule.

*Note: Shodhyatra(Two weeks - Immediately after completion of Sem-IV End Semester Exam)

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Contact	Distribution of Theory Marks				
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Shodhyatra	04	00	10	05	15	
II	Problem Definition & Submission	08	05	10	05	20	
III	Design Solution	20	10	10	10	30	
IV	Hardware/software simulation and partial Implementation	16	00	10	10	20	
V	Documentation & Presentation	08	00	05	10	15	
	Total	56	15	45	40	100	

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Prepare and submit project definition document in prescribed format.
- ii. Visit industry regularly.
- iii. Get help from innovative council/research organization for design solution.

iv. Report regarding stage wise progress to institute guide/industry mentor regularly.

v. Continuous practicing of latest circuit design and simulation tools/software.

vi. Study of intellectual property rights for patenting the project.

8. **SPECIAL INSTRUCTIONAL STRATEGIES (if any)**

- i. One day IDP awareness workshop.
- ii. Industry survey.
- iii. Seminar/Symposium
- iv. Group discussion/Debate
- v. Expert lectures of resource persons from industries/research organizations.
- vi. Arranging Industrial visit.

9. SUGGESTED LEARNING RESOURCES

A) List of Magazines.

i. Electronics for you.

- ii. Electronic design news.
- iii.Elector electronics.
- iv. Electronics project manuals

B) List of Major Equipment/ Instrument with Broad Specifications

- 1) Computer
- 2) Digital storage oscilloscope (DSO).
- 3) Spectrum analyzer.
- 4) Universal programmer.
- 5) Wide band function generator.
- 6) Soldering station with drill machine
- 7) PCB formulation kit
- 8) Clip on meter/ Multimeter / Power Supplies /
- 9) IC Tester / Continuity Tester /Component Tester
- 10) LCR Q -meters
- 11) Other equipments as per the need of project work.

C) List of Software/Learning Websites

http://www.electronicsproject.org http://www.circuiteasy.com http://www.electronics-project-design.com http://www.electronicsschematic.com

(The above list of websites are merely examples for the reference, students should go through

many other similar websites .)

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

• **Prof. D.H.AHIR**, Sr.Lecturer, Dept of EC engineering, G.P., Rajkot

And Associate Dean- GTU Zone-4

- **Prof.K.N.VAGHELA**, Sr.Lecturer ,Dept of EC engineering,
- G.P.,Ahmedabad
- Prof. M.S.DAVE, Sr.Lecturer, Dept of EC engineering, G.P., Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: COMPUTER NETWORKS (COURSE CODE: 3351105)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	5 th Semester

1. RATIONALE

Computers and computer networks are the sole of the present telecommunication system. Advanced digital communication system is based on the computer networks. Now a days every organisation, industry or the service sector own their private computer networks. Therefore in every organisation, the maintenance of the computer networks becomes one of the essential jobs of a diploma electronics engineer too. This course is therefore designed to help the Electronics and Communication diploma holders to develop this competency.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain hardware of various types of computer networks.

3. COURSE OUTCOMES

The theory should be taught and practical should be performed in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify computer network on the basis of various network parameters.
- ii. Identify OSI-ISO and TCP/IP computer network models.
- iii. Select guided and unguided medium for various types of data transmission.
- iv. Assign IP address to the network and network component as per the networks.
- v. Install various types of modems and other network hardware.

4. TEACHING AND EXAMINATION SCHEME

Teac	ching S	cheme	Total Credits	Examination Scheme				
(In Hou	rs)	(L+T+P)	Theory Marks Practical Marks			Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	150
4	0	2	6	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5.	COURSE DETAILS
----	-----------------------

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit	(Outcomes in Cognitive Domain)	
Unit – I	1a. State the necessity of Computer	1.1 Need and Advantages of
Network	Networks	Computer Networks
Fundamenta	1b. Discuss the applications of	1.2 Applications of computer
ls	Computer Networks	networks: Business,
		Industrial and home
		applications
	1c. Describe the functions of various	1.3 Components of Computer
	components of Computer	Networks: hardware and
	Networks	software
	1d. Compare various computer	1.4 Network topologies: Star,
	network topologies.	Ring, Bu <mark>s, M</mark> esh, Tree,
		Hybrid
	1e. Classify computer networks-	1.5 Network Classification
	Based on Transmission, scale, and	i. Based on Transmission
	Architecture	Technologies: Point-to-
	1f. Differentiate LAN, WAN, MAN	point, broadcast
	Ig. Describe configuration of PAN	11. Based on scale: PAN, LAN,
	with example	WAN, MAN, VPN, Internet
	In. State the applications service	111. Based on Architecture: Peer
	offered by WAN	to Peer, Client Server,
	11. Explain functions of VPN with	advantages of Client Sever
	example	Over Peer-to-Peer Model
$\frac{\text{Unit} - 11}{\text{Deference}}$	2a. Define the terms: Protocol,	2.1 Terms :Protocol, Interface,
Modol	somenties surfax	somenties syntax
WIUUEI	2b Explain the need for layer	2.2 The OSLISO Peteroneo
	modelling	Model: Brief functional
	2c Describe the functions of each	description of each layers
	laver of OSI Reference model	with list of protocols
	2d Describe the functions of each	2.3 The TCP/IP Reference
	laver of TCP/IP Reference model	Model: Brief functional
	2e. Compare the major features of OSI	description of each of the
	and TCP/IP model	Laver with list of protocols
Unit – III	3a. Explain characteristics of guided	3.1 Transmission Media:
Network	and unguided transmission media	Unguided and Guided
Me <mark>dia an</mark> d	3b. Describe specifications of UTP and	media,
Hardware	coaxial cable	Wired and Wireless,
	3c. Sketch constructional details of	UTP, Coaxial and Fiber
	UTP and coaxial cable with labels	optical cable
	3d. Sketch the various line signals	3.2 Physical Layer Interfaces:
	3e. Describe characteristics of	Types of Connectors and
	physical layer connectors	Signals
	3f. Explain need of line coding.	3.3 Line coding and Line
		coded signal
	3g. Explain structure of MAC and	3.4 Sub layers of Data Link
	LLC sublayers	Layers: MAC,LLC

I In:t	Major Learning Outcomes	Topics and Sub-topics
Unit	(Outcomes in Cognitive Domain)	
	3h. Explain functions of following	3.5 Network devices: Repeater,
	network devices: Repeater, Hub,	Hub, Bridge, Switch,
	Bridge, Switch, Router, B-router,	Router, B-router, Gateway,
	Gateway, Network Adapter,	Network Adapter, Access
	Access point, Wireless Access	point, Wireless Access
	points	points,
	3i. Differentiate between FDDI and	3.6 Fast and Gigabit Ethernet
	CDDI	3.7 FDDI and CDDI
	3j. Describe functions of remote	3.8 Remote connecting device:
	connecting devices: DTE and DCE	DTE and DCE
		3.9 Digital Subscriber Line
		technology: DSL, ADSL,
		HDSL
	3k. Compare the functions of various	3.10Servers: File, Print, Mail,
	types of Servers	Proxy, Web
Unit – IV	4a. Explain IP addressing scheme with	4.1 Internet addresses: gateway
Internet	examples	addressing, network and
architecture		broadcast addressing, dotted
		decimal notation, loopback
		addressing
	4b. Distinguish various components of	4.2 IP layer Protocols: IPv4
	IP v4 and IPv6 protocol.	and IPv6 frame Format
	4c. Compare functions and services	4.3 Connection oriented and
	TCP and UDP	Connectionless services
	• • •	4.4 TCP and UDP frame
		format
	4d. Differentiate between DNS, Email	4.5 Domain Name System:
	and FTP	Introduction, mapping to IP
		addresses
	4e. Explain the working of a Firewall	4.6 Security – Social issues,
	used for network security.	Hacking, precautions and
	4f. Describe role of Cyber security	Firewall, Cyber security
	Laws	Laws
Unit – V	5a. Describe the functions of cable	5.1 Cable modem system
Internet	modem.	
Services and	5b. Compare ADSL and broad band	5.2 ADSL and broad band
its	modem	modem
applications	5c. Classify different Internet Services	5.3 Internet Services
	5d. Differentiate FTP and Remote	world wide web: web
	10gill 5a Explain how Voice and Video is	browser, HTML, web
	Je. Explain now voice and video is transformed over D	5 4 Electronic Meile
	uansierieu Over IP.	5.4 Electronic Mail: Eurotions of Elmail
		system User agent
		Massaga format Mail
		Protocols (SMTD
		POP3), FTP. Remote

Unit	Major Learning Outcomes (Outcomes in Cognitive Domain)	Topics and Sub-topics
		Login 5.5 Voice and Video over IP 5.6 Social services: Forum, Newsgroup, blog

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks				
		Hours	R	R U		Total	
			Level	Level	Level	Marks	
Ι	Network Fundamentals	12	4	7	4	15	
Π	Reference Models	08	5	5	3	13	
III	Network Media and Hardware	12	5	5	4	14	
IV	Internet architecture	14	6	4	3	13	
V	Internet Services and Applications	10	5	6	4	15	
To	otal	56	25	27	18	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty members should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise (Outcomes in the Psychomotor Domain)	Apprx. Hrs. Requir ed
1	Ι	Prepare detailed report of existing LAN in the Department/Institute	04
2	Ι	Connect computer terminal in various physical topologies and test	02

S.	Unit	Practical/Exercise			
No.	No.	(Outcomes in the Psychomotor Domain)	Hrs.		
			Requir		
			ea		
		the data transfer	<u> </u>		
3	III	Compare performance of various types physical layer Connectors			
4	III	Compare performance of various types of Transmission media.			
		and Connectors			
5	III	Prepare and Test Straight UTP Cable	02		
6	III	Prepare and Test Cross UTP Cable	02		
7	III	Prepare and Test Cross CAT5,CAT6 and RJ11Cable	03		
8	III	Install/configure/Test Network Interface Card/port	03		
9	III	Install/configure/Test Networking devices	04		
10	III	Install/configure/Test small LAN using Hub/switch			
11	III	Install/configure/Test File Server			
12	III	Install/configure/Test Print Server			
13	III	Install/configure/Test Web Server			
14	IV	Install/configure/Test a small wireless network using access			
		points			
15	IV	Install/configure/Test Peer to Peer LAN and sharing of resources			
16	IV	Install/configure/Test Network operating System	03		
17	IV	Configure/Test Internet connectivity	03		
18	IV	Install and configure a Firewall for the network security	02		
19	IV	Check performance of network using ping, trace route commands			
20	V	Prepare report on e-mail service: contact list, group list, sorting,			
		searching, spam, inbox, sent mail, draft			
21	V	Compare the performance of various web browser: home page, 02			
		cookies, bookmark, history, favourites, download folder etc			
22	V	Use simple Network Commands for the network control	02		
operations					
Total Hours (perform practical form every unit so that 28 hours are utilized)					

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Prepare technical report on Current Network at your Department/ Institute.
- ii. Test the performance of HUB, Switches, router and Servers.
- iii. Project- Build a small PAN/ LAN at your Home /Community.
- iv. Enhance security of your network by introducing Firewall.

9. INSTRUCTIONAL STRATEGY

- i. Lecture and demonstration
- ii. Online animation/flash
- iii. Practical exercises, LAN implementation
- iv. Mini project related with industrial applications and house hold applications

10. SUGGESTED LEARNING RESOURCES

(A) List of Books

S.	Title of Books	Author	Publication
No.			
1.	Data Communication and	Forouzen	Tata McGraw Hill, Education
	Networking,		New Delhi (Latest edition)
2.	Computer Networks	Tannebaum AndrewS	Pearson, New Delhi, 5 th
		Wetherall David J.	Edition, 2011
3.	Data and Computer	Stallings Williams	PHI Learning, New Delhi
	Communication,		(Latest edition)
4.	Data Communication	Sharma Sanjay	S.K.Kataria and Sons, New
	Networks		Delhi (Latest edition)
5.	Computer Networks	Trivedi Bhushan	Oxford University Press, New
			Delhi 2013
(B)	List of Major Equipment i. Computer systems	t/accessories (P-IV and above)	.5.
	ii. Network Cable Cat		
	iii. Crimping Tool (RJ	CD.Y	

List of Major Equipment/accessories **(B)**

- Computer systems(P-IV and above) i.
- ii. Network Cable Cat 5/Cat 6.
- iii. Crimping Tool (RJ45,RJ11, Cat 5/Cat 6)
- **UTP** Cable Tester iv.
- Layer 2 Switch ,Hub(16 I/O) v.
- Wireless Access point and Wireless router vi.
- Network cable connectors(Cat 5/Cat 6/C2G, RJ45, RJ11) vii.
- viii. Network Trainer Kit

List of Software/Learning Websites **(C)**

- i. http://nptel.iitm.ac.in/courses.php?disciplineId=106
- ii. http://www.edrawsoft.com
- iii. Network Simulator Tool: GNS3 v0.8.5, NetSimK
- iv. www.learnerstv.com

11. **COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics**

- Prof. D B VAGADIA HOD (EC) Govt. Poly, Rajkot
- **Prof S N SAMPAT**, Sr. Lecturer (EC) Govt. Poly Gandhinagar.
- **Prof U V BUCH**. Sr. Lecturer (EC) Govt. Poly for Girls, Surat
- Prof P.G.PATEL, Lecturer (EC) Govt. Poly Ahmedabad.

Coordinator and Faculty Members from NITTTR Bhopal

• Prof. (Dr.) (Mrs.) Anjali Potnis, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INSTRUMENTATION & CONTROL ENGINEERING (COURSE CODE: 3351106)

Diploma Programme in which this course is offered	Semester in which offered		
Electronics and Communication Engineering	5 th Semester		

1. RATIONALE

Electronics is part and parcel of all modern instrumentation systems. Transducers, automatic process control, telemetry system, recorders, computer aided process control, data acquisition system and such others use a lot of electronics. Therefore, it is essential that every electronic and communication diploma engineer should know the basics of modern instrumentation and control systems so that the associated electronics can be maintained effectively. Hence, this course is developed to provide the fundamental knowledge of industrial instrumentation and control system to students to enable them to maintain the electronics modules.

2. LIST OF COMPETENCY

The course content should be taught and with the aim to develop different types of skills so that students are able to acquire following competency

• Analyze different types of instrumentation and control systems

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify various types of instrumentation systems and their modules.
- ii. Select appropriate transducer for measurement of physical parameters.
- iii. Monitor working of different types of process control systems.
- iv. Select appropriate types of telemetry system and recorders for relevant applications.
- v. Analyzes various types of computer aided process control system.

4. **TEACHING AND EXAMINATION SCHEME**

Teaching Scheme		Total	Examination Scheme					
(In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	150
04	00	02	06	70	30	20	30	130

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment.

Unit	Major Learning Outcomes (outcomes in cognitive domain)	Topics and Sub-topics
Unit-I Introduction to	1a. Describe different elements of instrumentation system with examples	1.1 Elements of instrumentation system including process and biomedical instrumentation
Instrumenta tion	1b. Classify the instrumentation systems	 i. Null and Deflection ii. Control and Monitoring iii. Analog and Digital
	 1c. With sketches describe various types of standard instrumentation signals 1d. Justify the need of signal conditioning 1e. Explain different types of Signal conditioning systems 	 1.2 Standard instrumentation signals: Pneumatic, Current loop, 0- 10 volts. 1.3 Signal conditioning: DC signal and AC signal conditioning.
Unit-II Measuremen t of Physical Parameters	2a. Describe measurement techniques of physical parameters like torque, length, speed, level	 2.1 Measurement techniques Measurement of torque Measurement of length Measurement methods of level measurement: Laser, Microwave, Optical,
	 2b. Explain working of magnetic flow meter 2c. Describe different types of pressure measurement techniques 2d. Classify temperature measurement techniques 2e. Describe working of different types of pyrometers 2f. Explain working of various types of position sensors 2g. Describe measurement techniques to measure humidity and moisture for different applications 2h. Describe working, principle of 	 2.2 Magnetic flow meter 2.3 Pressure measurement techniques by Strain gauge, Potentiometer, Pressure switch 2.4 High and low temperature measurement Radiation type pyrometer Optical type pyrometer Position sensor Resistive type Optical type Inductive type 2.6 Measurement of moisture and humidity
	Magneto-strictive, Hall effect, Ionization and Electrochemical Transducers	 i. Magneto-strictive transducers ii. Hall effect Transducers iii. Ionization Transducers iv. Electrochemical Transducers

5. COURSE DETAILS

Unit	Major Learning Outcomes (outcomes in cognitive domain)	Topics and Sub-topics
Unit-III Automatic Process Control	 3a. Explain need for automatic process control system. 3b. Explain different elements of automatic process control system. 3c. Describe different modes of process control system. 	 3.1 Need of automatic process control elements of process control 3.2 Advantages of automatic process control system 3.3 Modes of process control system:
		 i. Open loop ii. Closed loop(manual, on-off, P, I, D, PI, PD, PID)
Unit-IV	4a. Differentiate the different types of telemetry systems	4.1 Electrical telemetry system (current, position, impulse)
Telemetry System And Recorders	4b. Explain working of various types of electronic telemetry systems.	4.2 Electronic telemetry system(pulse telemetry-Pulse Amplitude Modulation ,Pulse Frequency Modulation, Pulse Duration Modulation, Pulse position modulation)
	4c. Describe the function of smart and intelligent transmitters.	4.3 Smart (intelligent) transmitters
	 4d. Explain the working of different types of recorders with block diagram 4e. Name the electronic components used in Telemetry System And Recorders 	4.4 Recorders Typesi. Strip chartii. Circular chartiii. X-Y plotter
Unit-V	5a. State the application of	5.1 Role of computer in process
Computer Aided Control Systems	 computers in process control. 5b. Explain at the block diagram level the different elements of computer based control systems 	control 5.2 Block diagram of the computer based control
	5c. Describe the function of various blocks of CNC machine.	5.3 CNC machine, various blocks of CNC machine
6	5d. Describe the use of the different computer interfaces to connect various electronic devices.	5.4 Standard interfaces: RS- 232,RS-422A,RS-485,GPIB
	5e. Describe the functions of Data acquisition systems	5.4 Data acquisition system.
	5f. Explain concept of virtual instrumentation.	5.5 Virtual Instrumentation: Conventional and Graphical Programming.

Uni		Topohing	Distrib	ution of Theory Marks		
	Unit Title	Teaching	R Level	U	Α	Total
ι		110015		Level	Level	Marks
I.	Introduction to Instrumentation	8	4	6	2	12
II.	Measurement of Physical Parameters	12	4	5	6	15
III.	Automatic Process Control	12	4	6	5	15
IV.	Transmitters, Telemetry System and Recorders	12	4	5	4	13
V.	Computer Aided Control Systems	12	6	4	5	15
	Total	56	22	26	22	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Revised Bloom's taxonomy)**Note:**This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty members should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercises	Approx Hrs. Required
1	I	Analyze standard instrumentation signals waveforms.	2
2	II	Test the performance of pressure type Potentiometer	2
3	II	Measure torque using strain gauge	2
4	II	Check the performance of synchros	2
5	II	Measure temperature using radiation/optical pyrometer	2
6	II	Measure pressure using strain gauge	2
7	II	Test a DC position control system	2
8	II	Measure water level using resistive transducer	2
9	II	Measure water level using capacitive transducer	2
10	II	Measure water Level using ultrasonic transducer	2

S. No.	Unit No.	Practical/Exercises	Approx Hrs. Required
11	II	Analyze the time response of second order processes with P Control	
12	III	Analyze the time response of second order processes with P+I Control	2
13	III	Analyze the time response of second order processes with P+D Control	2
14	III	Analyze e the time response of second order processes with P+I+D Control	2
15	IV	IV Use x-y recorder and graphic recorder for the appropriate quantity measurement.	
16	IV	Analyze performance of PAM type telemetry system	2
17	IV	Analyze performance of PPM type telemetry system	2
18	V	Analyze performance of data acquisition system	2
19	19VTransfer various type of data using RS-232,RS-422A,RS-485,GPIB standard cables.		
Total H	Hours (pe	erform practical from all units so that 28 hours are utilised)	38

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Test different types of transducers using simulation software like Prosim, simulink, lab volt etc.
- ii. Present seminar on any one topic related to the subject.
- iii. Develop a small Instrumentation and Control project using LAB VIEW software.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Industrial Visit
- ii. Internet based assignments
- iii. Organising expert lecture
- iv. Display of appropriate video films

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S.No.	Title of Books	Author	Publication
1.	Industrial instrumentation and	Singh, S.K.	TATA McGraw-Hill, New
	control		Delhi (Latest Edition)
2.	Introduction to	Ghosh, A. K.	PHI Learning, New Delhi
	Instrumentation and Control		(Latest Edition)
3.	Electronic measurement &	Jones, Larry, Chin,	Prentice Hall
	Instrumentation systems	A foster	International Edition
4.	Industrial Instrumentation and	Kumar, Sunil	S.K.Kataria and Sons, New
	Control		Delhi (Latest Edition)
5.	Transducers and	D. V. S. Murthy	PHI Learning, New Delhi

S.No.	Title of Books	Author	Publication
	Instrumentation		(Latest Edition)
6.	Industrial Instrumentation	Krishnaswamy,	New Age International,
		Vijayachitra, K.S.	New Delhi
			(Latest Edition)
7.	Process Control	Curtis D. Johnson	Pearson Publication,
	Instrumentation Technology		New Delhi
8.	Hand book of Maintenance	Garg, H. P.	TATA McGraw-Hill,
	Engineering.		International Edition
9.	Computer-Based Industrial	Kant, Krishna	PHI Learning, New Delhi
	Control		(Latest Edition)
10.	Virtual Instrumentation Using	Gupta, Sanjay and	TATA McGraw-Hill, New
	Lab View	John, Joseph	Delhi (Latest Edition)

B) List of Major Equipment/Materials with Broad Specifications

- i. Instrumentation and control trainer kits
- ii. DC Regulated Power supply
- iii. Function generator
- iv. CRO
- v. Digital Storage Oscilloscope

C) List of Software/Learning Websites

Any simulation software that shows working of different instrumentation and control circuits like Prosim, simulink, LAB VIEW etc.

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- Shri B. P. Raval, OV Sr. Lecturer (EC), Govt. Polytechnic, Rajkot.
 - Shri T. R. Parmar, Sr. Lecturer (EC), Govt. Polytechnic, Palanpur.
- Shri B.B.Renuka, Sr. Lecturer (EC), AVPTI, Rajkot.

Coordinator and Faculty Members from NITTTR Bhopal

• **Prof.** (Mrs.) Anjali Potnis, Assistant Professor, Department of Electrical and Electronics Engineering.