GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

DIGITAL MEMORY SYSTEMS (Code: 3331601)

Diploma Programme in which this course is offered	Semester in which offered
Information Technology	3 rd Semester

1. RATIONALE

The objective of Digital Memory Systems is to make the students understand the design, types and classification of a digital memory circuit. The recent trend of technology is towards efficient memory structures design and hence it becomes very crucial for the students of diploma in I.T. to understand fundamentals of memory designing and related topics. This Course will enable student to comprehend basic architecture of memory systems including processor architecture and its implementation.

2. **COMPETENCIES** (Programme Outcomes (POs) according to NBA Terminology):

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

• Comprehend various digital circuits, their logical functioning and applications.

• Illustrate typical architecture of memory and processor.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Cre					Exa	mination S	cheme	
(In Hours)		(L+T+P)	Theory Marks		ks Practical Marks		Total	
						Marks		
L	Т	P	C	ESE	PA	ESE	PA	150
3	2	2	7	70	30	20	30	130

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Note: It is the responsibility of the institute heads that marks for **PA of theory & ESE** and **PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. COURSE DETAILS

UnitOutcomes (Course Outcomes in Cognitive Domain according to NBA terminology)Unit – I1a.Explain various types of logic gates.1.1 Logic gates such as AND, OR, NOR, NAND EX-OR, X-NOR.Digitaltypes of logic gates.EX-OR, X-NOR.Memory1b. Classify Digital logic families on the basis of various1.2 Definition, Classification, Characteristics (Propagation delay, power dissipation, fan-ou fan-in, Noise Margin),comparison between various logic families.(No circuit design)1c. Design Memory registers for simple ourdications1.3 Flip-flop definition, types and design (R-S, clocked R-S, J-K, D and T)	', 1t,
Cognitive Domain according to NBA terminology)Unit – I1a.Explain various types of logic gates.1.1 Logic gates such as AND, OR, NOR, NAND 	', 1t,
Unit – I1a.Explain various types of logic gates.1.1 Logic gates such as AND, OR, NOR, NAND EX-OR, X-NOR.Digitaltypes of logic gates.EX-OR, X-NOR.Memory1b. Classify Digital logic families on the 	', 1t,
Unit – I1a.Explain various1.1 Logic gates such as AND, OR, NOR, NANDDigitaltypes of logic gates.EX-OR, X-NOR.Memory1b. Classify Digital1.2 Definition, Classification, CharacteristicsSystemslogic families on the basis of various(Propagation delay, power dissipation, fan-ou fan-in, Noise Margin),comparison between various logic families.(No circuit design)1c. Design Memory), 1t,
Digital Memorytypes of logic gates.EX-OR, X-NOR.Memory Systems1b. Classify Digital logic families on the 	ıt,
Memory Systems1b. Classify Digital logic families on the basis of various parameters.1.2 Definition, Classification, Characteristics (Propagation delay, power dissipation, fan-ou fan-in, Noise Margin),comparison between various logic families.(No circuit design)1c. Design Memory registers for simple omplications1.3 Flip-flop definition, types and design (R-S , clocked R-S, J-K, D and T)	ıt,
Systemslogic families on the basis of various parameters.(Propagation delay, power dissipation, fan-ou fan-in, Noise Margin), comparison between various logic families.(No circuit design)1c. Design Memory registers for simple omplications1.3 Flip-flop definition, types and design (R-S , clocked R-S, J-K, D and T)	ıt,
Basicsbasis of various parameters.fan-in, Noise Margin), comparison between various logic families.(No circuit design)1c. Design Memory registers for simple orrelications1.3 Flip-flop definition, types and design (R-S , clocked R-S, J-K, D and T)	
parameters.various logic families.(No circuit design)1c. Design Memory registers for simple1.3 Flip-flop definition, types and design (R-S , clocked R-S, J-K, D and T)	
1.3 Flip-flop definition, types and design (R-S, clocked R-S, J-K, D and T)	
registers for simple clocked R-S, J-K, D and T)	
applications	
applications. Unit – II 2a Discriminate 21 Definations requirement and types of clock	
Sequential various types of pulse. (Level triggered and Edge triggered)
Circuit clock Pulses.	/
Design 2b. Solve race around 2.2 Issues with J-K Flip-Flop, Master-Slave Flip	
problem. Flop, Edge Triggered Flip-flop.	
2c. Design sequential 2.3 Excitation table, state table and designing	
circuits for simple steps of simple sequential circuit design.	
applications.	
Unit – III3a.Describe the3.14-bit parallel load register design.	
Complex advanced sequential 3.2 4-bit bi-directional shift register design.	
Sequential circuit design. 3.3 4-bit binary synchronous counter design.	
Circuit 3.4 4-bit binary(ripple) asynchronous counter	
Design design.	
Unit – IV 4a. Describe the 4.1 Memory classification	
Memory various types of 4.2 Random Access Memory (RAM) (Static and	l
ArchitecturememoryDynamic RAM)	
4.3 Read Only Memory (ROM)(Types, Design of	of
32 x4 ROM)	
4.4 Programmable Logic Array (DLA)(comparison with BOM simple DLA	
(FLA)(comparison with KOW,simple FLA design)	
4.5 Cache(Physical address model, Cache	
performance, cache addressing)	
Unit – V 5a Classify Flynn's 5.1 Flynn's taxonomy classification.	
Processor taxonomy.	
Architecture5aExplain the various5.28086 architecture, Registers, flags, addressing	
blocks of 8086 modes, pin diagram)	
processor 5.3 Memory segmentation of 8086	
architecture.	
architecture.5b Calculate physical and logical address5.4 Physical and logical address calculation	

Unit	Unit Title		Distribution of Theory Marks				
		Teaching	R	U	Α	Total	
		Hours	Level	Level	Level	Marks	
Ι	Digital Memory System	8	2	4	4	10	
	Basics						
II	Sequential circuit design	6	2	4	6	12	
III	Complex sequential	8	4	6	6	16	
	circuit design						
IV	Memory architecture	10	4	5	6	15	
V	Processor architecture	10	4	5	8	17	
Tot	al	42	16	24	30	70	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may slightly vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

		Practical/Exercise	
S -	I In:+	(Course outcomes in Psychomotor Domain	Annuar
Sr. No	Unit No	according to NDA terminology)	Approx.
190.	INO.		nrs. Doguirod
1	T	Simulata hasia logia gatas using MultiSim/Electronia	2
1	1 (Any	Work Pench	2
	(Ally	Wolk Belicii.	
2	F)	Classify digital logic	2
2	Four)	Tammes.	2
3		Design of NAND logic gate using CMOS logic family.	2
4		Design of NOR logic gate using CMOS logic family.	2
5		Discriminate between flip-flop.	2
6		Design of R-S Flip Flop.	2
		Design of J-K Flip	
7		Flop.	2
8	II	Design of clock pulse generator circuit.	2
9	(Any	Simulate clock pulse generator circuit using	4
	Two)	MultiSim/Electronic Work Bench .	
10		Develop the excitation table of J-K Flip Flop	2
11		Develop the excitation table of R-S Flip Flop	2
12	III	Design of master slave JK Flip Flop.	2
13	(Any	Solve simple sequential design problem.	2
14	three)	Solve simple sequential design problem	2
15		Design 4 –bit Register using D- Flip Flop.	2
16		Design 4 –bit Register using T- Flip Flop.	2
17		Design 4 –bit Counter using R-S Flip Flop.	2
18		Design 4 –bit Counter using JK- Flip Flop.	2
19	IV	Design 32x4 ROM	4
20		Design PLA	2
21	V	Identify various blocks of 8086 Architecture	2

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Seminar Presentation
- ii. Chart and model Preparation

8. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

- i. The subject requires both theory and practical emphasis simultaneously, so that the student can understand the practical significance of the various application areas.
- ii. In Unit I & II, III, IV & V the teacher has to play an active role in demonstrating the designing of various sequential circuits and their implementation
- iii. The designed circuits available as listed in unit III should be shown to students so they can understand where & how the various circuits are implemented in real application applications.
- iv. Students are assigned to prepare various comparative charts for register and counters as mentioned in Unit III.
- v. Students should be given enough exposure to variety of simulation software also should be given to students

9. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S.	Title of Books	Author	Publication
No.			
1	Digital Electronics, 1 st Edition	Mandal, Soumitra Kumar	McGraw Hill
2	Digital Electronics, 5 th Edition	Green ,D.C.	Pearson Education
3	The x86 microprocessor architecture, programming and interfacing 8086 to Pentium, 1 st Edition	Das, Lyla B.	Pearson
4	Advanced computer Architecture, 4 th Edition	Kai Hwang	ТМН

B. List of Major Equipment/Materials with Major Specifications.

- i. Power supply: 10 V.
- ii. Digital Trainer kit for flip flops.
- iii. Digital Multimeter $3_{1/2}$ digit to measure 5 volt.
- iv. CRO with 1 MHz frequency, single trace
- v. Clock Pulse Generator for square wave generation of 5 volts.
- vi. Components:IC 7400 NAND gate IC, IC 7402 NOR gate IC, IC 7404 NOT gate IC, LED
- vii. Consumables:Connecting wires single strained, Patch Chords with banana jack connector with multiple outputs.

C List of Software

- i. MultiSIM (Latest version)
- ii. Electronic Work Bench (Latest version)

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Nandu Fatak**, Lecturer IT, Govt. Polytechnic. Ahmedabad
- **Prof. Pooja Garach**, Lecturer IT, Govt. Girls. Polytechnic. Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. K. J. Mathai**, Associate Professor Dept. of Computer Engg. and Applications,
- **Dr. R.K. Kapoor**, Associate Professor Dept. of Computer Engg. and Applications,

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

OPERATING SYSTEMS (Code: 3330701)

Diploma Programme in which this course is offered	Semester in which offered
Computer Engineering, Information Technology	3 rd Semester

1. **RATIONALE**

An operating system is the core software of any computer system. This is the basic software or platform on which other software work. Every student of computer science and IT must therefore understand basic structure of an operating system. After learning this subject student will be able to discriminate between various types of operating systems, its processor, processes, and memory and file management. The subject also emphasis on Linux utilities and scripting.

2. COMPETENCY (Programme Outcome (PO) according to NBA Terminology):

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• To install & configure various Operating Systems.

3. TEACHING AND EXAMINATION SCHEME

Tea	ching S	cheme	Total Credits	Examination Scheme				
	(In Hou	rs)	(L+T+P)	Theory Marks Practical Marks		Total		
			X			Marks		
L	Т	Р	С	ESE	PA	ESE	PA	150
3	0	2	5	70	30	20	30	130

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning	Topics and Sub-topics
	Outcomes (Course	1 1
Unit	Outcomes in Cognitive	
	Domain according to	
	NBA terminology)	
Unit – I	1a. Explain different	1.1 Need of operating system
Operating	operating system	1.2 Evolution of operating system
System	1b. Explain types of	1.3 Operating systems
Concepts	operating system	i. Batch
-		ii. Multi programming
		iii. Time Sharing
		iv. Real Time
		v. Multitasking
		vi. Multithreading
		1.4 Operating System Services
		1.5 Case study
		i. Linux
		ii. Windows 7
Unit – II	2a. Describe process	Process and Process management
Processor &	model	i. Process model overview
Process	2b. Describe process	11. Programmers view of process
Management	state	111. Process states
	2c. Compare processor	2.2 Process and Processor Scheduling
	scheduling algorithm.	i Scheduling Criteria
		11 First Come First Serve
		111 Round Robin
		1V SJF
	24 Company different	V SRIN
	2d. Compare different	2.5 Schedulers
	2a Describe	a synchronization
	condition & mutual	ii Race condition
	exclusion	iii Mutual Exclusion
	exclusion	iv Monitors
	2f Identify Deadlocks	2.4 Dead lock
	2g Apply Deadlock	i Prevention
	recovery procedure	ii Avoidance
		iii Detection and recovery
Unit _ III	3a Describe memory	3.1 Memory management
Momory	management	3.1 Wennory management
Management	3h Differentiate	3.2 Contiguous allocation
management	Contiguous and Non-	i Partitioned memory allocation
	contiguous memory	ii Fixed & variable partitioning
	3c. Differentiate physical	iii Swapping
	and virtual primarv	iv Relocation
	memory	v Protection and Sharing
	-	3.3 Non contiguous allocation
		i Page allocation
		ii Segmentation
		iii Virtual Memory

		Tratic and Cal Araba			
	Major Learning	Topics and Sub-topics			
	Outcomes (Course				
Unit	Outcomes in Cognitive				
	Domain according to				
	NBA terminology)				
Unit – IV	4a. Apply file	4.1 File management			
File	management	i. User view of file system			
Management	concepts in	ii. Attributes and operations			
Munugement	Operating System	iii. File system design			
		iv. Disk space			
	4b. Explain Directory	4.2 Directory structure			
	structure of				
	Operating System				
	4c. Describe Disk	4.3 Disk Organization			
	organization	i Physical structure			
	organization	ii Logical structure			
		iii Addressing			
	4d Implement file	A A Security and Protection mechanism			
	system security	4.4 Security and Protection methanism			
	system security.				
Unit – V	5a. Install Free & Open	5.1 Overview of Linux			
Linux Basics	Source Software /	5.2 Installation and upgrade			
	Open source				
	Operating System				
	5b. Test and Execute	5.3 Introduction to shell and commands			
	basic Linux	i. Commands: pwd, cd, mkdir, rmdir, ls, cat, cp,			
	commands	rm, mv, wc, split, cmp, comm, diff, head, tail,			
		grep, sort, apt-get install, apt-get remove			
	5c. Test and Execute	5.4 Editing files with "vi", "vim", "gedit", "gcc"			
	shell commands in a	5.5 Linux Shell			
	script	Basic shell scripts			
		•			

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks				
		Teaching	R	U	Α	Total	
		Hours	Level	Level	Level	Marks	
Ι	Operating System	06	04	06	0	10	
	Concepts						
II	Processor & Process	12	06	10	04	20	
	Management						
III	Memory Management	10	06	08	02	16	
IV	File Management	06	04	06	0	10	
V	Linux Basics	08	02	04	08	14	
Tota	al	42	22	34	14	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Apprx. Hrs. Required
1	Ι	Install & test different types of Operating System & compare	2
		its features.	
2	II	Compare various process scheduling algorithm	2
3	V	Test and run basic unix commands.	2
4		Test and run Advanced unix commands.	2
5		Test commands related with File editing with Vi, Vim, gedit,	2
		gcc.	
6		Create a shell script to print "Hello".	2
7		Create a Shell script to read and display content of a file.	2
8		Create a Shell script to read from command line.	2
9		Create a Shell script to append content of one file to another	2
10		Create a Shell script to accept a string in lower case letters from	2
		a user, & convert to upper case letters.	
11		Create a Shell script to find numbers of characters, words &	2
		lines of a given input file.	
12		Create a Script to reverse a string and display it.	2
13		Create a Script to check a string is palindrome.	2
14		Create a Shell script to add two numbers.	2
15		Create a shell script to reverse the digits of a given 5-digit	2
		number. (for eg., if the no. is 57429 then answer is 92475).	
		Total	30

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- PowerPoint Presentation
- Seminar based Presentation
- Case study

8. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

Concepts should be explained thoroughly in theory sessions and should be implemented in laboratory appropriately along with the problem solving. Concept should be developed by giving problems to students as assignments and in tutorials.

9. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S.	Title of Books	Author	Publication
No.			
1	Operating systems	Dhamdhere	MGH
2	Unix Concepts And Application	Sumitabha Das	MGH
3	Modern Operating System 3 rd	Andrew Tanenbaum	PHI
	Edition, 2008		
4	Operating System Concepts, 3 rd	James Peterson	JOHN WILEY &
	Edition	Wesley	SONS. INC
		Abraham	
		Silberschatz	
5	Operating Systems, 2010 Edition	Sib <mark>sanka</mark> r Haldar	Pearson Education
6	Operating System, 2005 Edition	Milan Milenkovic	MGH
7	Operating Systems concept based	Dhananjay M.	MGH
	approach (3 rd Edition)		
8		•	
9	Linux – Application and	Ashok Kumar Harnal	TMH
	administration, 2009 Edition		

B. List of Major Equipment/Materials

- i Linux based Host machines (Free & Open Source Software or Open source)
- ii Computers with latest hardware configuration

С

List of Software/Learning Websites

- i Operating System concepts: http://nptel.iitm.ac.in/courses/Webcoursecontents/IISc-ANG/Operating%20Systems/New_index1.html
- ii Linux basics: www.freeos.com/guides/lsst
- iii Linux basics: www.linuxcommand.org/writing_asell_scripts.php
- iv Linux basics: www.distro.ibiblio.org/damnsmall/current/dsl-4.4.10embedded.zip

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Manoj P. Parmar**, In-charge Head of Department, Information Technology, Government Polytechnic, Ahmedabad.
- **Prof. Parvez K. Faruki**, Lecturer, Information Technology, Government Polytechnic, Ahmedabad.
- **Prof.** (Mrs.) Harsha P. Chauhan, In-charge Head of Department, Information Technology, Government Polytechnic for Girls, Ahmedabad.
- **Prof. Darshan M. Tank**, In-charge Head of Department, Information Technology, Lukhdhirji Engineering College (Diploma), Morbi

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Shailendra Singh**, Professor & Head Dept. of Computer Engineering and Applications,
- Dr. K. J. Mathai, Associate Professor Dept. of Computer Engineering and Applications,

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

COMPUTER GRAPHICS (Code: 3331602)

Diploma Programme in which this course is offered	Semester in which offered
Information Technology	3 rd Semester

1. RATIONALE

The Computer Graphics course prepares students for activities involving the design and development of graphics and animations found in media, entertainment, sciences and engineering. The students needs to learn the basic elements of graphics, perform operation of translation, scaling, rotation of two/three dimensional pictures, develop interactive graphics user interface and prepare media elements for the above applications.

In this course the students will be able to learn basics of Computer Graphics, Output Primitives, 2/3-Dimentional Geometry and Viewing, and Application of Computer graphics in Image Processing. For some students this course may lead to a career in the area of graphics and animations.

2. **COMPETENCY** (Programme Outcome according to NBA Terminology):

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Develop capability to perform the operation of translation, scaling, rotation of two/three dimensional pictures and implement it using functions in C.

Tea	ching So (In Hou	cheme rs)	Total Credits (L+T+P)	Examination Scheme				
				Theory Marks Practical Marks			Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	150
3	2	2	7	70	30	20	30	150

3. TEACHING AND EXAMINATION SCHEME

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Maine Landing Ordenning	Tania and Cab Arrian			
Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics			
Unit – I	1a. Identify the need of Computer Graphics.	1.1 Identify evolution of graphics system.			
Introduction	1b. Describe various applications of	1.2 Application in different areas			
to Computer	Computer Graphics.	i. Presentations Graphics.			
Graphics	1 1	ii. Education and Training.			
-		iii. Computer Art.			
		iv. Image Processing.			
		v. Multimedia.			
		vi. Entertainment.			
		vii. Computer Aided Design.			
		viii. Virtual Reality.			
		ix. Advertisement.			
	1c. Demonstrate working of	1.3 Scanning Systems.			
	input/output Devices.	i. Raster and Random Scanning.			
		ii. Vector Scanning.			
		1.4 Video Display Devices			
		i. Raster and Random Display System.			
		ii. CRT and Color CRT.			
	<pre></pre>	iii. Flat panel displays.			
		iv. VGA.			
		1.5 Hardcopy Devices			
		i Halftoning scheme.			
		ii Types of Printers.			
		1.6 Input Devices.			
		i. Keyboard. ii Touch Panel			
	07	ii. Touch Panel.			
		iii. Digitizing Tablet.			
		iv. Mouse.			
		v. Trackball.			
		vi. Data Glove.			
		vii. Light Pen.			
		viii. Image Scanners.			
		ix. Postscript.			
Unit – II	2a. Test and Implement Line	2.1 Simple line drawing algorithm.			
Output	drawing Algorithm	2.2 DDA algorithm.			
Primitives		2.3 Bresenham's Line Algorithm.			
	2b. Test and Implement Circle	2.4 Mid-point circle generating algorithm.			
	and Ellipse Drawing Algorithm.	2.5 Iviid-point ellipse generating algorithm.			
	2c. Test and Implement Area filling	2.6 Scan Line polygon fill algorithm.			
	algorithms.	2.7 Boundary fill algorithm.			
		2.8 Flood fill algorithm.			
	2d. Explain Types of Polygon.	2.9 Convex and Concave Polygons.			

	Major Learning Outcomes	Topics and Sub-topics
T T •/	(Course Outcomes in Cognitive	Topics and Sub-topics
Unit	Domain according to NBA	
	terminology)	
	2e. Describe Character	2.10 Methods of Character generation.
	Generation Methods.	i Hardware Based.
		ii Vector Based.
		iii Bitmap Based.
Unit – III	3a. Explain Basic 2-Dimensional	3.1 General procedures for applying translation,
2Dimention	3b. Transformations.	rotation and scaling parameters to reposition
al Geometry		and resize two-dimensional objects.
and viewing		
	3c. Explain Matrix representation	3.2 Matrix representations of Basic
	and	Transformation.
	3d. Homogeneous Co-ordinates of	3.3 Homogenous Co-ordinates of Basic
	Basic Transformation	Transformations.
	3e. Generate Composite	3.4 Generating composite transformations by
	transformations by using	calculating the matrix product of the
	3f. Basic Transformations	individual transformations.
		3.5 General Pivot Point Rotation and General
		Fixed Point Scaling.
		3.6 Inverse transformation.
		3.7 Study of Reflection, Zooming, Panning,
	2a Evalain Viewing pineling	Jaggies.
	sg. Explain viewing pipeline.	5.8 Windows to Viewport co-ordinate
	21. Trad and Longle mark Oliveria	Lansformation.
	on algorithms	3.9 Point Clipping algorithm.
	algorithms.	5.10 Line clipping algorithms.
		i. Liang Barsky
		11. Lidiig Daisky
		i Sutherland Hodgeman
		i Weiler Atherton
		3 12 Text clipping algorithm
		3 13 Exterior clipping
		Site Enterior empring.
Unit – IV 📈	4a. Explain 3-Dimensional	4.1 Translation, rotation and scaling in
3Dimension	transformations.	3Dimensional.
al Geometry		4.2 Coordinate Axes Rotation and General
and Viewing		Three Dimensional Rotations.
		4.3 Reflections and Shears.
	4b. Explain Viewing Pipeline in	4.4 3Dimensional viewing pipeline.
	4c. 3-Dimensional.	
	4d. Describe the types of	4.5 Parallel projections.
	4e. Projections.	4.6 Perspective projection.

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
Unit – V	5a. Explain Importance of	5.1 Importance of Image processing
Application	5b. Image Processing.	i Importance of Graphics in Image
of Computer		Processing.
graphics in		ii Computer Graphics and Image Processing
Image		in 2Dimensional, 3Dimensional
Processing		graphics and Images.
		iii GUI, Typesettings, visualization, CAD,
		photocollaging, artwork etc.
	5c. Explain methods for	5.2 Difference between digital and real image.
	5d. Manipulating Digital Image.	5.3 Different methods to display same digital
		image
		i Halftoning, Nearest neighbor.
		ii Image sampling, Quantization and levels
		iii Human perception to images
		iv Discrimination, adaptation, contrast,
		Persistence
		5.4 Requirements for human vision
		1. Illumination.
		11. Objects.
	5. Emploin Colonalestific (111. Eyes.
	Sectors	5.5 Color classification System
	System.	1 Nunsell's color classification
		11 AYZ Color space

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		D	istribution	of Theory I	Marks		
		Teaching Hours						
			R	U	A	Total		
			Level	Level	Level	Marks		
Ι	Introduction to Computer	6	4	4	2	10		
	Graphics							
II	Output Primitives	8	5	4	6	15		
III	2-Dimensional Geometry and	11	4	6	6	16		
	Viewing							
IV	3-Dimensional Geometry and	9	4	5	6	15		
	Viewing							
V	Application of Computer graphics	8	2	4	8	14		
	in Image Processing							
Tota	al	42	19	23	28	70		

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

GTU/NITTTR/Bhopal/13

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may slightly vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

Sr. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx. Hrs. Required				
1	I	Demonstrate working of different input devices.	2				
2		Demonstrate working of different output devices.	2				
3	II	II Implement the algorithm to draw line using different line style					
4		Implement the DDA algorithm to draw the line. Generalize it for co-ordinates.	2				
		Implement the Bresenham's algorithm to draw the line. Generalize it for co-ordinates.	2				
5		Implement the midpoint circle generation algorithm to draw circle.	4				
		Implement the ellipse generation algorithm to draw Ellipse using	4				
6		Implement the algorithm to Draw the polygon using filling technique.	4				
7	III	Perform the operation of scaling for two dimensional pictures.	2				
8		Perform the operation of translation for two dimensional pictures.	2				
9		Perform the operation of Rotation for two dimensional pictures.	2				
10		Perform the operation of windowing and clipping techniques	2				
12	IV	Perform the operation of translation for three dimensional pictures.	2				
		Perform the operation of scaling for three dimensional pictures.	2				
		Perform the operation of Rotation for three dimensional pictures.	2				

GTU/NITTTR/Bhopal/13

Sr.	Unit	Practical/Exercise (Course Outcomes in Psychomotor Domain	Approx. Hrs.
No.	No.	according to NBA Terminology)	Required
13		Develop an application to implement animations using built	4
		in functions in C.	
14	V	Perform the Resizing and cropping of different images	2
15		Perform the application of quantisation levels on different	2
		digital images	
		Total	46

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- Prepare computer graphics as per specification.
- Prepare programs for games.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. The subject requires both theory and practical emphasis simultaneously, so that the student can understand the practical significance of the various application areas.
- ii. The teacher has to play a very active role for Units I, II, III, IV and V demonstrating the fundamentals and their applications.
- iii. Students will be able to learn fundamentals of graphics through practical from unit II, III and IV.
- iv. Students are assigned to prepare power point presentations on the various applications of computer graphics.

9. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No.	Title of Books	Author	Publication
1	Computer Graphics 2 nd Edition	Donald Hearn &M Pauline Baker	PHI Learning
2	Computer Graphics 2 nd Edition	Steven Harington	McGraw Hill
3	Digital Image Processing 3 rd Edition	Gonzalez & Woods	Addison Wesley
4	Computer Graphics: Principals and Practices in C 2E	James D. Foley	Pearson Education
5	Image Processing for Computer Graphics 3 rd Edition	Jonas Gomes Luiz Velho	Springer

GTU/NITTTR/Bhopal/13

(B) List of Software/Learning Websites

- Introduction to Computer Graphics: http://www.cs.umd.edu/~mount/427/Lects/427lects.pdf
- ii. Output Primitives: http://www.technicalsymposium.com/Computer_Graphies_1.html
- iii. 2-Dimensional Geometry and viewing: http://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/2DTransforms.html
- iv. 3-Dimensional Geometry and viewing: http://courses.cs.vt.edu/~cs4204/lectures/transformations.pdf
- v. Application of Computer graphics in Image Processing: http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/lecture04-Image_Processing.pdf

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

100

- Prof. Parvez Faruki, Lecturer in IT, Government Polytechnic, Ahmedabad.
- Prof. (Mrs.) Sheenam P. Garg, Lecturer in IT, Govt. Polytechnic, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. K. J. Mathai, Associate Professor, Deptt. of Computer Engg. and Applications
- Dr. R. K. Kapoor, Associate Professor, Deptt. of Computer Engg. and Applications

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

DATA STRUCTURES (Code: 3330704)

Diploma Programme in which this course is offered	Semester in which offered
Computer Engineering, Information Technology	3 rd Semester

1. RATIONALE

Development of application systems and software that use underlying architecture of machines efficiently and effectively requires the ability to use and manipulate various types of Data Structures and other constructs. This being a fundamental ability which is language neutral, yet requires use of a language for its implementation. This is a basic course which goes along with other programming courses to develop an integrated ability to efficient software development, hence this course is very important for computer and IT diploma engineers.

2. COMPETENCY (Programme Outcome according to NBA Terminology):

The course content should be taught and implemented with the aim to develop various types of skills so that students are able to acquire following competency:

• Implement various types of algorithms using Data Structures.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Scheme					
(In Hours)		(L+T+P)	Theory Marks		Practical Marks		Total	
							Marks	
L	Т	Р	С	ESE	PA	ESE	PA	
3	2	2	7	70	30	20	30	150

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA -Progressive Assessment

4. COURSE DETAILS

	MajorLearning Outcomes	Topics and Sub-topics		
Unit	(Course Outcomes in			
	to NBA terminology)			
Unit – I	1a. Represent the data in	1.1 Data Structure Basic Concepts		
Basic	relevant memory	1.2 Types of data structures		
Concepts of	2			
Data	1b. Differentiate primitive			
Structures	and non-primitive data	1.3 Primitive and non-primitive data structures		
	structures			
	Ic. List key features of an	1.4 Introduction to Algorithms		
	algorithm	1.5 Key features of an algorithm		
	1d. Define time complexity	1.6 Analysis Terms (for the definitions purpose		
	and space complexity	only) :		
		a. Time Complexity		
		b. Space Complexity		
		C. Asymptotic Notations, Big O, Notation,		
		Time Complexity, Worst case Time		
		Complexity		
	1e. Design and Implement	1.7 Array :		
	programs to represent	i. Row Major Arrays		
	array in row major and	ii. Column Major Arrays		
	column major order	1.8 Overview of various array operations.		
	1f. Design and Implement	1.9 Searching an element into an array –		
	search algorithms	i. Linear Search		
		ii. Binary Search		
Unit– II	2a. Create strings	2.1 String representation : Reading and Writing		
Strings		Strings		
	2b. Develop algorithms	2.2 String operations : Finding length of a string,		
	toimplement various	Converting Characters of a string into upper		
	operations on string	case and lower case, Concatenation of two		
		Bayersing a string Conving a string		
		Comparing strings Insertion Substring		
		Deletion		
Unit– III	3a. Define linear and non-	3.1 Linear and Non-Linear Data Structures		
Stack and	linear data structures and	3.2 Stack : Array representation of Stack, PUSH		
Queues	develop algorithms to	POP Operations on Stack, Implementation		
	push an element into	of Stack, Application of Stack, Infix, Prefix		
	stack, pop an element	and Postfix Forms of Expressions, Recursive		
	from the stack.	Functions (factorial, greatest common		
		divisor, Fibonacci series)		

	MajorLearning Outcomes	Topics and Sub-topics
Unit	(Course Outcomes in	
Olit	Cognitive Domain according	
	to NBA terminology)	
	3b. Implement Queue with	3.3 Queue: Array representation of Queue,
	various operations like	Operations on Queue, Implementation of
	insert delete	Queue, Limitation of Single Queue
	3c. Differentiate circular and	3.4 Concepts of Circular Queue
	simple queue	3.5 Application of queue
		3.6 Difference circular queue and simple queue
Unit– IV	4a. Define linked list	4.1 Pointers Revision
Linked List		4.2 Revision of Structure
		4.3 Revision of structure using pointers
		4.4 Dynamic Memory Allocation
		4.5 Linked list Presentation
		4.6 Types of Linked List
	4b Develop algorithms to	4.7 Basic operations on singly linked list
	insert node, from front	Insertion of a new node in the beginning of
	to the end at any	the list at the end of the list after a given
	position delete element	node before a given node in sorted linked
	insert into sorted list	list Deleting the first and last node from a
	delete node from singly	linked list Searching a node in Linked List
	linked list	Count the number of nodes in linked list
	linked list	eount the number of nodes in mixed list
	4c Distinguish circular	4.8 Concepts of circular linked list
	linked list and singly	4.9 Difference, between circular linked list and
	linked list	singly linked list
	Ad Develop algorithms to	4 10 Basic operations on Doubly linked list :
	insert node from front	Insertion of a new node in the beginning of
	to the end at any	the list at the end of the list after a given
	position delete node	node before a given node. Deleting the first
	from doubly linked list	and last node from a linked list Searching a
	fiold doubly linked list	node in Linked List Count the number of
		nodes in linked list
	As List the applications of	4 11 Applications of linked list
	de. List the applications of	4.11 Applications of miked list
	linked list	
Unit-V	5a. Arrange data in	5.1.Sorting Methods :
Sorting and	ascending and	a. Bubble Sort,
Hashing	descending orders using	b. Selection Sort,
	appropriate sorting	c. Quick Sort,
	algorithm	d. Insertion Sort,
		e. Merge Sort,
		t. Radıx Sort
	5b. Apply various hashing	5.2.Hashing Concepts
	techniques	5.3.Hash functions : Division Method, Middle
		Square Method, Folding Method,

	MajorLearning Outcomes	Topics and Sub-topics			
T T 1 /	(Course Outcomes in	- · F - · · · · · · · · · · · F - · ·			
Unit	Cognitive Domain according				
	to NBA terminology)				
	5c. Apply collision	5.4.Collision in Hashing			
	resolution techniques	5.5.Collision resolution techniques: Linear			
	Testerion teening area	Probing			
Unit– VI	6a Define non-linear data	6.1 Non-linear data structures			
Trees	structure				
	6b Develop algorithms to	6.2 Binary trees : Complete Binary Tree, Basic			
	manipulate tree	Terms: level number, degree, in-degree and			
	1	out-degree, leaf node, similar binary trees.			
		copies of binary trees, directed edge, path,			
		depth. General Tree. Conversion of General			
		Tree to Binary Tree, Forest.			
	6c Implement various tree	6.3 Binary Search Tree : Insertion of a node in			
	manipulation algorithms	binary tree. Deletion of a node in binary tree.			
		Searching a node in binary tree			
		64 Tree Traversal · Inorder Preorder Postorder			
	6d List applications of tree	6.5 Applications of binary tree			
	ou List applications of tree	0.57 (ppiloartons of officiary free			

5. SUGGESTED SPECIFICATIONTABLE WITH HOURS & MARKS(THEORY)

Unit	Unit Title		Distribution of Theory Marks			rks
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Basic Concepts of Data					
	Structures 🧲	4	4	3	0	7
II	Strings	4	2	2	3	7
III	Stack and Queues	8	2	6	6	14
IV	Linked List	10	4	8	2	14
V	Sorting and Hashing	8	2	6	6	14
VI	Trees	8	4	4	6	14
Total		42	18	29	23	70

Legends:R = Remember; U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may slightly vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

Sr. No.	Unit No.	Practical Exercises (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx. Hrs. Required
1	Ι	Define various terms such as algorithm, various approaches to	2
		design an algorithm, time complexity, space complexity, big 'o'	
		notation, best case, average case and worst case time complexity	
		etc.	
		Develop simple program using pointer to a structure	
2	Ι	Implement array using row major order and column major order	2
3	Ι	Implement Sequential search algorithms	2
4	Ι	Implement Binary search algorithms	2
5	II	Implement various string algorithms	2
6	III	Implement push and pop algorithms of stack using array	2
7	III	Implement recursive functions	2
8	III	Implement insert, delete algorithms of queue using array	2
9	III	Implement insert, delete algorithms of circular queue	2
10	IV	Implement simple structure programs using pointers	2
11	IV	Implement insertion of node in the beginning of the list and at the	4
	Ń	end of list in singly linked list	
12	IV	Implement insertion of node in sorted linked list	2
13	IV	Implement insertion of node at any position in liked list	2
14	IV	Implement searching of a node, delete a node and counting no of	4
		node algorithms in singly linked list	
15	IV	Implement insertion of node in the beginning and at the end of	2
		doubly linked list	
16	IV	Implement insertion of node at any position in doubly liked list	2
17	IV	Implement searching of a node, delete a node and counting no of	4
		node algorithms in doubly linked list	
18	V	Implement Bubble sort, Selection sort algorithms	2
19	V	Implement Quick Sort	2
20	V	Implement Insertion sort, Shell sort algorithm	2

21	V	Implement Merge Sort algorithm	2
22	V	Solve hash table example using division method, method square	2
		method, folding method (paper work only)	
23	VI	Implement construction of binary search tree	2
24	VI	Implement inorder, preorder and postorder traversal methods in	2
		binary search tree	
25	VI	Implement searching algorithm in binary search tree	2
		Total	56

Note: In tutorials - Students will write programs and in practical session -execute program

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

Prepare seminars on various topics like stack, queue, singly linked list algorithms, doubly linked list, sorting algorithms, tree algorithms etc.

Prepare diagrams/chart to display various sorting methods, string representation; data representations etc.

Develop a program with real life application example of particular topic.

Compare various sorting and searching methods. Prepare hash tables using given methods.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

The course activities include Lectures, Supervised Tutorials and Practical Exrecises as per teaching scheme. The programmes in C++ would be prepared during tutorials and would be executed during practicals sessions. Following needs attention:

- i. Concepts will be introduced in lectures using charts.
- ii. Role play by students for explaining concepts of array, stack, queue and sorting
- iii. Problem solving will be done through tutorials.
- iv. Practical work will be through laboratory sessions.
- v. Debate/Group Discussions for comparision of searching and sorting methods
- vi. Solving Puzzels

9. SUGGESTED LEARNING RESOURCES

A. List of Books

S.	Title of Books	Author	Publication
No.			
1	Data and File Structures using	Thareja,Reema	Oxford University Press New
	С		Delhi 2011
2	Data Structures using C	ISRD Group	McGraw Hill, New Delhi,
			2013
3	Data Structures	Chitra, A Rajan, P T	Tata McGraw Hill, New delhi,
			2009
4	Classic Data Structures	Samanta, D.	PHI Learning, New Delhi

B. List of Major Equipment/Materials with broad specifications

- i. Hardware: Computer System with minimum PIV processor (or equivalent) and minimum 1 GB MB RAM.
- ii. Software: Turbo C++/ Borland C++/ any other higher software

C. List of Software/Learning Websites

- i. Turbo C/C++ or Borland C/C++ or any software that support c/c++ compiler
- ii. Data Structure Introduction:http://nptel.iitm.ac.in/video.php?subjectId=106102064
- iii. Data Structure Tutorial: http://www.roseindia.net/tutorial/datastructure/
- iv. Data Structure Fundamentals: http://www.cprograms.in/index.htm
- v. Data structure videohttp://www.youtube.com/watch?v=tORLeHHtazM

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Dr. P.P.Kotak**, Head Deptt. of Computer Engineering, AVPTI, Rajkot
- **Prof. K. N. Raval**, Head Deptt. of Computer Engg., RCTI, Ahmedabad
- **Prof. Rahul B. Pancholi**, Lecturer, Deptt. of Computer Engg., L. J. Ahmedabad
- **Prof.(Mrs.) R.K.Vaghela,** Deptt. of Computer Engg., RCTI, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Shailendra Singh**, Professor & Head Deptt. of Computer Engg. and Applications
- **Dr. PriyankaTripathi**, Associate Professor, Deptt. of Computer Engg. and Applications

(102

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

SOFTWARE PRACTICES WITH VB.NET (Code: 3331603)

Diploma Programme in which this course is offered	Semester in which offered
Information Technology	3rd Semester

1. RATIONALE

VB.NET is widely used technology for development of web based applications in industry and commerce. Integrated development environment (IDE) is comprehensive integrated suit that helps in development and debugging from the single user interface which is predominantely GUI based. Competence in development of VB.NET based web-applications is primary ability deemed necessary for an IT professionals, hence this course is important for students.

2. COMPETENCY(Programme Outcome according to NBA Terminology):

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Develop relevant software applications in VB.NET.

A. A.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Scheme					
(In Hours)		(L + T + P)	Theory Marks		Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	100
0	2	2	4	00	00	40	60	100

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
Unit – I	1a. Describe the use of IDE	1.1 Concept IDE- Menu, Tool Bars, Property
Introduction to	components.	Window, Solution Explorer, Windows Form
Visual Studio	1b. Use IDE environment to	1.2 Designer, Visual Basic Code Editor
2008	develop application.	1.3 Console Applications Development- an
	1c. Create simple console	Introduction
	program.	
	1d. Write simple program.	1.4 Writing First VB.NET Program
	1e. Debug simple application.	1.5 Debugging – an introduction

	Major Learning Outcomes	Topics and Sub-topics
	(Course Outcomes in	Topics and Sub topics
Unit	Cognitive Domain according	
	to NBA terminology)	
Unit _ II	2a Define storage capacity and	2.1 Data Types Variables and Constants
Cint – 11 Fundamentals	range of different data types	2.1 Duta Types, Variables and Constants
Fundamentals	and variables	
Of VB.NET	2h Apply control statements	2.2 Program Control Statements
	20. Apply control statements	i Loop Structure (For/Next While Do while
	according to logic of	Do Until)
	program.	DO UIUII)
		Case)
	2c. Compare subroutines,	2.3 Subroutines, Functions and Events
	Functions and Events.	
	2d. Define advanced data	2.4 Arrays, Enumerations, Structures
	types.	
	2e. Apply different properties	
	and methods of advanced	
	data types in simple	
	application.	
Unit – III	3a. Design windows form of	3.1 Form, Label, Button
Windows	simple application.	3.2 Textbox, Rich text box
Forms	3b. Set properties of different	3.3 Radio Button, Check Box,
Common	windows form controls.	3.4 List Box, Combo Box
Controla	3c. Identify appropriate control	3.5 Scrollbar, Trackbar
Controis	for the given program.	3.6 TreeView, Listview
	3d. Apply different methods of	(Basic properties, methods and events of
	controls in simple	each control)
	application.	
	3e. Develop simple application	
	using different controls –	
	Facilitating user interaction.	
Unit – IV	4a. Use dialog boxes to open &	4.1 Dialog Boxes(OpenFileDialog,
Advance Form	save file to the local disk.	SaveFileDialog, FontDialog, ColorDialog,
Controls	4b. Apply formatting options.	PrintDialog)
	4c. Create menu driven simple	4.2 Menus
	application.	
	4d. Create Multiple Document	4.3 MDI Form
	Interface application.	
Unit – V 🥒 🗸	5a. State types of errors.	5.1 Types Of Error
Exception	5b. Differentiate Errors.	
Handling	5c. Analyse error prone code.	5.2 Error Detection
	5d Handle exception occurred	5.3 Exception Handling
	at runtime.	5.4 Structured Error Handling(Try-Catch-
	at i difficiente.	Finally)
		5.5 Throwing Manual Exception

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Note: There is no end of the term exam in this course and hence this table is not applicable.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical/Exercise	Approx
		(Course Outcomes in Psychomotor Domain according to	Hrs.
		NBA Terminology)	Required
1	Ι	Implement Arithmetic calculator using console.	2
2	Π	Develop a program to produce grade sheet using console.	2
3		Develop a program to check given number is prime or not using console.	2
4		Develop a program to print Fibonacci series using console.	2
5		Develop a program to check given number is palindrome or not using console.	2
6		Develop a program to factorial of a number using function using console.	2
7		Create form to demonstrate use of methods and properties of array.	2
8	III	Display message using Textbox, Label and ButtonControl.	2
9		Implement simple textpad to perform undo, redo, cut, copy,	2
		paste, select all, find, replace, loadfile, savefile operations using richtextbox.	
10		Create employee registration form to collect details (using radio button, checkbox and other controls).	2
11	\sim	Create form to select hobbies and nationality using checkbox and radio button.	2
12		Create a form to demonstrate use of methods and properties of listbox.	2
13		Create a form to demonstrate use of methods and properties of combobox.	2
14		Implement canteen order form to take order from customer (using listbox and combobox)	2
15		Create a form to change the height and width of label using trackbar.	2
16		Implement colour palate to change the backcolor and forecolor of textbox using scrollbar.	2
17		Create form to demonstrate use of methods and properties of treeview.	2

S. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to	Approx Hrs.
		NBA Terminology)	Required
18		Create form to demonstrate use of methods and properties of	2
		Listview.	
19	IV	Create MDI application having file menu (New, Open, Save, 2	
		Print, Close) and Format menu (Font, Forecolor, Backcolor).	
20	V	Create form to demonstrate use of structured exception	2
		handling.	
		Total	40

Notes: (i) Develop or create means write, debug, execute and test the program (ii) In tutorials - Students will write programs and in practical session -execute program

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i Develop programs related with topics, in accordance with the sequence of the units, states in the course in computer laboratory.
- ii Develop at least one programming module of a real life application.
- iii Prepare multimedia presentation of module developed.
- iv Search internet for VB.NET based learning resources, programming examples and code segments for re-use in your application.
- v Consult Library and the internet to find & state title, and features of periodicals/journals in area of VB.NET based applications development.

8. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

Concepts should be explained thoroughly in tutorial sessions and should be implemented in laboratory appropriately along with the problem solving. Concepts should be developed by giving problems to students as assignments and in tutorials.

9. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S .	Title of Books	Author	Publication
No.			
1	Beginning Visual Basic 2008	Thearon Willis,	Wrox Publication, New
		Bryan Newsome	Delhi,2008
2	Visual Basic 2008 Programmer's	Rod Stephens	Wrox Publication, New
	Reference		Delhi,2008
3	VB.Net in Nutshell, 2 nd Edition.	Steven Roman, Paul	Oreilly
		Lomax	

B. List of Major Equipment/Materials

- i Computer with configuration to work with MS visual studio
- ii Multimedia Projector
- iii Internet access, and
- iv Access to library resources

C List of Software/Learning Websites

- i. Software : Microsoft Visual Studio 2008
- ii. VB2008 Tutorial Visual Basic Tutorial:

www.vbtutor.net/vb2008/vb2008tutor.html

iii. Visual Basic .NET 2008 Tutorial: http://www.sourcecodester.com/Tutorials/visual-basic-net/visual-basic-net-2008-tutorial.html

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Rikita D. Parekh**, Lecturer in Information Technology, Govt Polytechnic for Girls, Ahmedabad
- **Prof. Abhilasha S. Shrivastav**, Lecturer in Information Technology, Government Polytechnic for Girls, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. D. Singh Karaulia, Professor, Dept. of Computer Engg. and Applications
- Dr. M. A. Rizvi, Associate Professor, Dept. of Computer Engg. and Applications