GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

SAFETY INSTRUMENTATED SYSTEMS AND SAFETY INTEGRATED LEVEL (Code: 3331701)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	3rd semester

1. RATIONALE

In the present industrial scenario, to avoid industrial accidents and hazards, many inbuilt checks and controls are provided by having "Safety Instrumented Systems". It is therefore desirable that a diploma engineer should be able to identify, classify and maintain the different 'Safety Instrumentated System's as well 'Safety Integrated Levels' applied to Safety Instrumented Systems. They are required to implement the planned safety Process Instrumentation maintenance schedules universally followed by the instrumentation and process industries. Therefore, this course has been designed to take care of this need, to make the students 'work ready'.

2. COMPETENCY ('Programme Outcome' according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain the different types of "safety Instrumentated systems" as well as "safety integrated levels" associated with them in Process Instrumentation Application

Tea	ching S	Scheme	Total Credits	Examination Scheme				
	(In Hou	irs)	(L+T+P)	Theory Marks Practical Marks			Total Marks	
L	Т	Р	С	ESE	PA	ESE	РА	150
3	0	2	5	70	30	20	30	

3. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit;; **ESE** - End Semester Examination; **PA** - Progressive Assessment.

4. COURSE DEATAIL

	MAJOR LEARNING OUTCOMES	
UNIT	('Course Outcomes' in Cognitive Domain	Topics/subtopics
	according to NBA terminology)	
	1a.Classify the various types of zones with respect to hazard and safety of process in instrumentation and control	1.1 With guiding standard of IEC 61421.10 and IEC 60079.10 for Types of Zones of Processes in NFPA 497/API 500: Non-
	1b.Compare the specific Zones in Process Instrumentation	Hazardous Area, Division 2 or Zone 2 area, Division 1 or Zone 1 area, Zone 0 area
UNIT-I INSTRUMENTAT		a. Dust zones: Zone 20, Zone 21, Zone 22
PROCESS APPLICATIONS	E.	b. Gas / Vapour groups : Gas Group, Gas Group IIA, Gas Group IIB, Gas Group IIC
		c. Equipment Protection Level (EPL):
	00	Level - I (mines), II (gas), III (dust) Equipment category: Category 1, Category 2,
		Category 3
		d. Common Materials within Associated Class and Group
	Chille I	 Katings Class I Areas: Group A: Acetylene / Group B: Hydrogen / Group C: Propane and Ethylene /
		Group D: Benzene, Butane, Methane and Propane
		· Class II Areas: Group E: Metal Dust / Group F: Carbon and
		Charcoal / Group G: Flour, Starch, Wood and Plastic · Class III Areas: NO GROUP: Cotton and Sawdust
6		f. ANSI/NFPA areas description (Class I- Div. 1, Class I- Div. 2, Class II- Div. 1, Class II- Div. 2, Class III-Div. 1, Class III- Div. 2)

		g. Temperature classification: USA°C Type T1 - 450 , T2 - 300, T2A - 280, T2B - 260, T2C - 230, T2D - 215, T3 - 200, T3A - 180, T3B - 165, T3C - 160, T4 - 135, T4A - 120, T5 - 100, T6 - 85
		h. Type of protection: Ex Code d- Flameproof ,e- Increased Safety ,o- Oil Filled ,q- Sand/Powder/Quartz Filled ,m- Encapsulated ,p- Pressurised/purged ,i- Intrinsically safe ,n- Non Incendive ,s- Special
	1c. List out different system included in 1.2 in reference of safety instrumented system with application	1.2 Safety Instrumented Systems include: Equipment protection system, Emergency shutdown system, Safety critical system, Interlock (engineering)
	1d. Describe reliability regimes	 1.3 Reliability regimes: regimes for life-critical systems, Fail- operational systems, Fail-safe systems, Fail-secure systems, Fail-Passive systems, Fault- tolerant systems 1.4 Software engineering for life- critical systems
UNIT-2 SAFETY INSTRUMENTED SYSTEM	2a.Define Safety Instrumentation Systems (terms)	2.1 safety instrumentation systems terms : Hazard and operability studies (HAZOP), failure modes, effects, and criticality analysis (FMECA), probability of failure on demand (PFD), failure mode and effects analysis (FMEA), SFF Safe Failure Fraction, , Safety Instrumented Function) SIF, Process Hazards Analysis (PHA), Hardware Fault Tolerance , HIPPS (High Integrity Process Pressure System)

	2b.Describe safety life cycle	Safety Life Cycle: Concepts (safety acronyms), Safety Life Cycle, Safety Instrumented Function (SIF), Safety Requirement Specification(SRS)
UNIT-3 SAFETY INTEGRATED LEVEL(SIL)	3a.Define Risk with reference to safety integrated system.	3.1. Each SIF is assigned a Safety Integrity Level (SIL) during SIL analysis - risk assessment: i. SIL 0/none – lowest risk ii. SIL 1 – 95% of the SIFs iii. SIL 2 – 5% of SIFs iv. SIL 3 – < 1% (not likely in refineries, but possible in off-
	3b.Describe safety integrated level SIL-0 to SIL-4	v. SIL 4 – highest risk (only seen in nuclear industry) vi. RISK = Hazard Frequency X Hazard Consequence Event
Unit-4	4a. Compare SIF and SIS	4.1 SFF (Safe Failure Fraction)
SIF (Safety	4b. Compare SIF and SIL	4.2 SIF (Safety Instrumented
Function) and SFF	4c. Define the terms of SIF	Function)
(Safe Failure		1. Hazard, Mode of operation,
Fraction) in Field,		Detection, Decision, Action,
Utility and Safety		state Response time Proof test
Instrumentation		interval Safety instrumented
Maintenance		system (SIS). Spurious trip rate
Unit – 5	5a. Describe the working of various types of	5.1 Reports / Records
Operation,	reports required for maintenance management.	i. Safety Instrument bin card
maintenance,		ii. Safety Instrument log book
testing,		iii. Safety Instrument
reporting and		Maintenance indent
management of		book(physical, human
Protection System		resource)
Program (PSMP)		hook
riogram (ribitir)		
(^`	5b. Define the terms context to Protection	5.2 Protection System
	System Maintenance Program (PSMP)	Maintenance Program (PSMP) Terms : Verification ,Monitoring
	5c. List types of Protection System Maintenance Program PSMP - 5.2.1 to 5.2.7	,Testing, Physical Inspection , Calibration , Upkeep , Restoration i. Monitoring by Analysis of Fault
	5d. Describe the working of various types of PSMP 5.2.1 to 5.2.7 maintenance management	Records ii. Performance-Based

5e. Compare each other (PSMP $-$ 5.2.1 to 5.2.7	Maintenance Process
5f. Identify maintenance activity and tasks in Time Based Maintenance.	iii. Maximum Allowable Verification Intervals
	iv. Time Based versus Condition Based Maintenance
5g. Describe Self-Monitoring Capabilities and	 v. Condition Based Maintenance (CBM) Programs vi. Time Based Maintenance (TBM) Programs vii. Overlapping the Verification of Segments of the Protection System 5.3 Self-Monitoring Capabilities
Limitations of the system components	and Limitations
5h. Notify the Protection System failures as report and action	5.4 Notification of Protection System Failures

5. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit No.	Unit Title	Teaching Hours	Distribution of Theory Marks			
	2		R Level	U Level	A Level	Tota l
Ι	Instrumentation Safety in Process Applications	5	3	2	2	7
П	safety instrumented systems (SIS)	10	4	5	5	14
ш	safety integrated level (SIL)	10	4	5	5	14
IV	SIF (Safety Instrumented Function) and SFF (Safe Failure Fraction) in field, utility and Safety Instrumentation Maintenance	5	3	2	2	7
	Critical, Safety,	5	4	5	5	14

V	Protective					
	Instrumented System					
	Operation,	7	4	5	5	14
VI	maintenance, testing					
	reporting and					
	management of					
	Protection System					
	Maintenance					
	Program (PSMP)					
	Total	42	22	24	24	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

4. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in** *affective domain* as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical Exercise ('Course Outcomes' in Psychomotor Domain according to NBA terminology)	Approx Hours Required
	Ι	Identify the Instrumentation Safety in Process Applications continuous process from a textile industry.	02
2.	Ι	Identify the Instrumentation Safety in Process Applications continuous process from a chemical industry	02

	Ι	Prepare a daily	02
3.		maintenance schedule	
		for a given safety	
		instrumented systems in	
		a textile process.	
	Ι	Draw a control loop for	02
4.		a safety instrumented	
		systems operated in a	
		textile process.	
	Ι	Draw a control loop for	02
5.	_	a safety instrumented	
		systems operated in a	
		chemical process boiler	
		plant	
	Ι	Prepare a half-yearly	02
6	Ĩ	maintenance schedule of	02
0.		activities for safety	
		integrated level (SIL) 1	
		instrument used in a	
		given chamical process	
	Т	Brapara a list of	02
7	1	activities for a yearly	02
/.		activities for a yearry	
		for SIE (Sofatu	
		Instrumented Function)	
		schedule for a given	
		chemical process	
	I	Maintain the indicating	02
8		instruments for SIE	02
8.		(Safety Instrumented	
		Function) in a given	
		process.	
	П	Maintain the Protective	02
9		Instrumented System	~_
2.		controlling instruments	
		for a given chemical	
		process boiler plant	
	II	Maintain the Protective	02
10		Instrumented System	02
10.		recording instruments	
		for a given process in a	
		boiler	
	III	Maintain the Protective	02
11	111	Instrumented System	02
11.		final control	
		alamanta/instrumanta for	
		elements/instruments for	
		a given textile dyeing	
10	T ¥ 7	process.	02
12.	IV	1 est the performance of	02
		the final control	

		elements/instruments of Protective Instrumented System for a given	
		chemical process	
13.	V	Log the maintenance activity carried out for a given process in hard as well enter the data in computerized maintenance management software in	02
		appropriate log. Field.	
14.	V	Carry out maintenance activity with Antivirus / Authorization/ Password for a given computerized maintenance management software.	02
То	tal	2	8

7. SUGGESTED LIST OF STUDENT ACTIVITIES

i. Students may be given exercises based on various instrumentation devices and components to maintain related to above topics.

ii. Students may be asked to collect photographs using internet which is relevant to field application of various topics and have to prepare learning materials using it.

iii. Teachers guided self learning activities, Course/library/internet/lab based mini projects, industrial visit etc.

iv. Students activities like: course/ topic based seminars, Internet based assignments.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Visits to Industries
- ii. Bring small instrumentation components to the class when teaching
- iii. Internet based home assignments
- iv. Mini project

9. SUGGESTED LEARNING RESOURCES

A) List of Books S No	Author	Title of Books	Publication/Year
1	ld Goettsche.	ISA Maintenance of Instruments and Systems,	2nd Edition Maintenance of Instruments and Systems, 2nd Edition Id Goettsche.ISA
2	Lindley R. Higgins, R. Keith Mobley, Darrin Wikoff	Maintenance Engineering Handbook,	Seventh Edition
3	W G Andrew	Applied Instrumentation to Process Industries	Vol. 1 to 4 Gulf Publication
4	Jones E. B.	Instrument Technology,	Vol - I, II, Hollywell
5	Williams M. Goble	Control system safety evaluation and reliability	ISA
6	Alan McMillan,	<i>Electrical Installations</i> <i>in Hazardous Areas</i> ,	Butterworth-Heineman 1998
7	Harry Cheddie , William M. Goble	Safety Instrumented Systems Verification: Practical Probabilistic Calculation	ISA

B) List of Major Equipment/ Instrument with Broad Specifications

i. Instrument Maintenance Shop Tools

- a) Dead weight tester / Comparison Guage,
- b) Temp. Controlled Bath,
- c) Temp. Controlled Oven,
- d) Assorted Pneumatic and Hydraulic tubing/ piping tools,
- e) Pneumatic Calibrator, Electronic Calibrator,
- f) Thermo Couple Calibrator, Indicator puller,
- g) Impulse line bending and flaring tools, Allenkey set,
- h) Open and Ring fix Spanner set,
- i) Adjustable pipe wrench and Spanner,
- j) Screw Driver set,
- k) Digital Multimeters with True RMS 41/2 Digit,
- l) Clip on meters,
- m) Assorted Electrical Insulated Tools set,
- n) Soldering / Desoldering Station,

o) Drilling M/c,

p) Mini Compressor,

q) Mechanical Vice,

r) Megger / insulation tester

s) Fibre Optic assorted tools – Splicer, Alignment tool, cutter, Splitting Tools, All assorted Magnetic tools,

t) All maintenance Consumables viz., Isopropyl Alcohol, Silicon Oil, Sprays ,CTC Thermic

Fluids, Silicon Grease, Graphite based Grease, Clove Oil, Chart recorder Inks – Red/ Blue/ Black

ii. Standards Equipment Room

a) high precision dead weight tester (customs design)

- b) high precision voltmeter
- c) general purpose oscilloscope

d) stabilized power supply (high precision-high and low voltage)

- e) high precision weighing balance
- f) precision resistance thermometers

g) one set of glass thermometers (-5 to $+250^{\circ}$ C)

- h) precision variable resistance (Decade box)
- i) whetstone bridge
- j) high precision barometer
- k) high precision dew point hygrometer
- l) standard platinum resistance
- m) precision current source
- n) flat bed recorder
- o) standard thermocouples

iii. Pneumatic 'Shop'

- a) precision pressure regulator
- b) pneumatic test rig for controllers (depending on manufacturer)
- c) set of precision gages
- d) low pressure/vacuum calibration system
- e) pneumatic calibration unit
- f) digital pressure calibrator (300 mbar)
- g) digital pressure calibrator (1.6 bar)
- h) digital pressure calibrator (10 bar)
- i) high pressure test kit (200 bar)
- j) portable low pressure pump
- k) portable calibrator
- l) pneumatic calibrator- electro
- m) pneumatic calibrator
- n) absolute pressure unit

iv. Electronic 'Shop'

- a) portable temperature indicator ($6\frac{1}{2}$ digits)
- b) portable multivolt meter ($6\frac{1}{2}$ digits)
- c) whetstone bridge
- d) variable resistance (decade box)
- e) analogic voltmeter multi-function
- f) logic analyzer
- g) electronic voltmeter
- h) digit al counter frequency meter
- i) universal impedance measuring bridge
- i) adjustable and portable power supply (high + low voltage) ets.d
- k) function generator
- 1) programmable pulse generator
- m) general purpose oscillator
- n) transistometer
- o) stroboscopic tachometer
- p) calibration set for vibration monitor
- q) digital circuit tester
- r) milli-ohm meter (in 0.001 ohm steps)
- s) high resistance meter (500 kohms)
- t) PT 100 simulator
- u) flat bed recorder (dual bed)
- v) portable tachometer
- w) XY recorder (dual bed)
- x) set of standard resistors (10 000 to 1 000 ohm)
- y) set of standard platinum resistances
- z) test oscilloscope microprocessor (to be kept in the control room, for integrated control systems)
- aa) digital oscilloscope with memory
- bb) low-voltage megger (50 Volts)
- cc) high-voltage megger (500 Volts)
- dd) earth fault detector
- ee) specific 'manufacturers' calibrator
- ff) cold junction reference
- gg) computer peripherals.

v. Special test-benches

- a) control valve
- b) hydraulic (portable type)
- c) temperature, pressure, flow, level & analytical instrumentation

vi. Standard Test-Benches

- a) light duty
- b) pneumatic
- c) electronic
- d) DCS and PLC
- e) analyzer (general duty)
- f) analyzer (specific duty)

vii. Test Equipment

a) set of precision pressure gages

- b) low-pressure calibration unit (including vacuum)
- c) set of digital pressure calibrators (300 mb to 10 bar)
- d) pneumatic portable calibration unit (0.2 to 1 bar)
- e) portable temperature indicator (TC simulator)
- f) one or two electronic digital accurate voltmeters
- g) variable resistance (decade box)
- h) portable oscilloscope (general purpose)
- i) PT 100 simulator calibrator
- j) portable tachometer
- k) manufacturer's' calibrator(s)
- l) portable pulse and function generator
- m) portable variable power supply (amps/volts).
- n) -standard Voltage/frequency Sources

C. List of Software/Learning Websites

a) http://confirm.pbbiblogs.com/2009/11/28/8-types-of-maintenance-a-comparison/

ers.or

- b) www.maintenancephoenix.com/.../8-steps-to-success-in-maintenance-
- c) www.reliabilityweb.com/.../Maintenance%20Scheduling%20101.pdf
- d) Maintenance Event Builder (MEB). Soft ware
- e) www.clicksoftware.com/service_schedule
- f) www.mainpac.com/ Maintenance Software
- g) http://www.mainpac.com.au/ Preventive Maintenance Software
- h) www.clicksoftware.com/service_schedule SOFTWARE

i) Predictive maintenance software module of DCS, safety instrumentation preventive maintenance software.

- www.mainpac.com/ Maintenance Software
- http://en.wikipedia.org/wiki/Electrical_equipment_in_hazardous_areas
- http://en.wikipedia.org/wiki/Safety_instrumented_system
- http://en.wikipedia.org/wiki/Safety_critical_system
- http://en.wikipedia.org/wiki/Fail-safe

- http://en.wikipedia.org/wiki/Fail-secure
- http://en.wikipedia.org/wiki/Fault-tolerant_system
- Center for Chemical Process Safety book, Guidelines for Safe and Reliable Instrumented Protective Systems
- http://www.mpri.lsu.edu/workshop/Safety%20Instrumented%20Systems%20Angela%20 Summers.ppt
- http://www.processengr.com/ppt_presentations/safety_instrumented_systems.pdf
- https://www.jlab.org/accel/ssg/safety/Understanding_sil.pdf
- http://www2.emersonprocess.com/siteadmincenter/PM%20DeltaV%20Documents/Articl es/ControlMagazine/The-Safety-Instrumented-Function-An-S-Word-Worth-Knowing.pdf
- http://www.google.co.in/url?sa=tandrct=jand q=safety%20instrumented%20systems%20pptandsource=webandcd=3and cad=rjaandved=0CD0QFjACandurl=http%3A%2F%2Fwww.cad.bnl.gov%2FESSHQ%2FASW2009%2FPresentations%2FEtkin%2C%2520Asher%25 20Tuesday%25208-18-09.pptxand ei=-NlfUf65GMPirAeR94CoBAand usg=AFQjCNFicYjLjSmRHXfjoXZTIhwQogfovgand bvm=bv.44770516,d.bmk
- http://www.cyber.st.dhs.gov/pcs/
- http://www.amazon.com/Safety-Instrumented-Systems-Verification-Probabilistic/dp/155617909X#reader_B0092WVBH8
- http://www.isa.org/Template.cfm?Section=books3and template=Ecommerce/FileDisplay.cfmandProductID=7915and file=ACFE503.pdf
- http://www.iec.ch/functionalsafety/
- www.siracertification.com
- http://www.hima-sella.co.uk/data/pp/pp054/docs/61508_overview_sira.pdf
- http://www.iamechatronics.com/notes/78-lessons-in-instrumentation/482-safety-instrumented-functions-and-systems
- http://www.nerc.com/docs/standards/sar/PSMT_Supplementary_Reference_Draft1_2009 July23.pdf
- NERC/SPCTF/Relay_Maintenance_Tech_Ref_approved_by_PC.pdf

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnic

- Prof. R.R. Manchiganti, HOD IC Engineering, Govt. Polytechnic Gandhinagar
- **Prof. N.B. Mehta**, Lecturer IC Engineering, Government Polytechnic, Ahmedabad
- **Prof. H.P. Patel**, Lecturer IC Engineering, Government Polytechnic, Ahmedabad

Faculty Member from NITTTR Bhopal

- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering
- Dr. Shashikant Gupta, Professor and Coordinator for State of Gujarat.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

TELEMETRY SYSTEM (Code: 3331702)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	3 rd semester

1. RATIONALE

In the process instrumentation, almost all the measurements are done remotely since data from one equipment is sent to other equipment for control. In some cases data from all the equipment is sent to centrally located control room for overall control. Telemetry is the science of measuring parameters and collecting data at remote or inaccessible points and transmitting them to receiving equipment for monitoring and taking action from optimum and safe operating point of view. The word 'telemetry' is derived from Greek roots: tele = remote and metron = measure. A diploma instrumentation engineer is therefore required to maintain telemetry systems in instrumentation used for monitoring and safe operations of the total system. Hence, it is essential for students to develop the associated skills by study this course deeply.

2. COMPETENCY ('Programme Outcome' according to NBA Terminology)

The course content should be taught and implemented with the aim to make the students competent enough

• Maintain telemetry systems in instrumentation used for monitoring and safe operations of the total system

Tea	aching	Scheme	Total Credits	Exam		Examination Scheme		1		
	(In Ho	urs)	(L+T+P)	Theory Marks		Theory Marks		Practica	l Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150		
3	0	2	5	70	30	20	30	150		

3. **TEACHING AND EXAMINATION SCHEME**

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning Outcomes	Topics and Sub-topics
Unit	(Course Outcomes in Cognitive	
Umt	Domain according to NBA	
	terminology)	
Unit – I	1a. Describe the block diagram a	1.1 Telemetry System Overview:
Telemetry	typical telemetry system	functional blocks of a
Principles	1b. Classify the different types of	telemetry system
	telemetry systems	1.2 Telemetry types:
	1c. Describe each type of telemetry	Energy Medium –
	system with using relevant loop	Pneumatic, Hydraulic
	/block diagram	• Electrical - Current, Pulse
	1d. Compare the merits and	• Signal Type - Analog,
	demerits of Hydraulic,	Digital
	Pneumatic and Electric	• Frequency Spectrum for
	Telemetry	telemetry application
	1e. State standard output ranges of	
	all types of telemetry systems	0,
UNIT II	2a. State strengths of fluid power	2.1 Strengths of fluid power with
Hydraulic,	with examples of hydraulic	examples of hydraulic fluids
Pneumatic	fluids	2.2 Components used in Hydraulic
and Electrical	2b. With functions, state the 🔨 🥄	Transmissions:
Telemetry	components of a typical	• Reservoir, Strainers, Filters,
Systems	hydraulic telemetry system.	Hydraulic Pumps-
		Centrifugal, reciprocating
		and Rotary
	X N	• Lines -Types of tubes and
		pipes, fittings and connectors
	0.1	for impulse line tubing,
		Sealing Devices
		• Types of Direction Control
		Valve
		2.3 Types of Accumulators
	2c. With functions, state the	2.4 Components of Pneumatic
	components of a typical	Telemetry system:
	Pneumatic Telemetry system.	• Receiver tank, Strainers,
		Filters
		• Compressor - Centrifugal,
		reciprocating and Rotary
		 Lines -Types of Tubes and
		Pipes Fittings and connectors
		for Impulse Line tubing,
		Sealing Devices
		• Junction boxes, Enclosures,
		clamps-P- U type,
		Numbering / Tagging system
		Direction Control Valve -
		Types

Unit	Major Learning Outcomes (Course Outcomes in Cognitive	Topics and Sub-topics
	terminology)	
	2d. With sketches label each component of the electrical telemetry system. State the steps to troubleshoot the electric telemetry loop	 2.5 Electrical Telemetry Components of Electrical Telemetry: Cables, Junction boxes, Enclosures, connectors (Soldered/ Unsoldered – Screw/press fit), clamps-P- U type, Numbering/ Tagging system, Terminals Terminating types (Soldered-unsoldered (screwed, pressed, crimped)
Unit – III Process Data Multiplexing / Demultiplexin g Techniques	 3a. Justify the need of process data multiplexing and Demultiplexing in Telemetry 3b. Describe the working principle of the following: Multiplexers: TDM, FDM, WDM, CDM 3c. State merits and demerits of each type Multiplexer 	 3.1 Multiplexing in Telemetry Systems 3.2 Types of Multiplexing – Time Division Multiplexing (TDM), Frequency Division Multiplexing (FDM), Wavelength Division Multiplexing (WDM), Code Division Multiplexing (CDM)
Unit – IV Process Signal Modulation and Demodulation Techniques	 4a. Justify the need of Process Signal Modulation and Demodulation 4b. Describe the modulation with block diagrams. 4c. Describe the following types of modulation: AM, FM, PM, PAM, PPM. PWM, PCM. 	 4.1 Modulation for Telemetry - Carrier Signal, Process Signal as Information 4.2 Types of Modulation: Amplitude Modulation (AM), Frequency Modulation (FM), Phase Modulation (PM), Pulse Modulation (PM), Pulse Amplitude Modulation (PAM), Pulse Position Modulation (PPM), Pulse Width Modulation (PWM), Pulse Code Modulation (PCM) and Demodulation of all
Unit – V Process Data Transmission Standards and Buses	 5a. Describe the modes of transmission. 5b. Differentiate between guided / unguided transmission media 5c. Describe the features of each type of guided transmission media 5d. Name the types of unguided transmission media 5e. State the steps to be taken to maintain various buses used for 	 5.1 Mode of transmission: simplex, half duplex, Full duplex 5.2 Transmission Media: Guided and Unguided 5.3 Guided Media: Twisted Pair, Coaxial Pair, Optical Fibre 5.4 Unguided Media: Radio, FM, sky wave, space wave, Infrared

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)		Topics and Sub-topics
	transmitting signals		
	5f. State the types and importance	5.5	Serial and parallel
	of Serial and parallel		transmission standards,
	transmission standards for		
	industrial data		• • • • • •
	5g. Name the various Industrial	5.6	Industrial Instrumentation
	Instrumentation Communication		Communication Buses:
	Buses with features their		Foundation Field Bus,
	applications		Prolibus, IEEE488 (GPIB),
Init VI	6. Compare the features of various	61	Fibra ontic Cable Ontical
Ontical	types of Fibre ontic cables	0.1	Fibre components: Types of
Telemetry	6 Name the types and parts of		Switches Couplers Splitters
and	optical fibre connectors		Fibre optic Connectors
Safety	6c. Describe the steps for installing	62	Elements of Optical Telemetry
Measures	a fibre optical connector	0.2	Liements of optical referencely
	6d. State the procedure to test an		
	installed fibre optic connector	1,2 N	
	6e. Describe the effect of Back		
	reflection and methods to		
	minimise this using optical		
	isolator		
	6f. With sketches state the		
	functions of each components of		
	the optical telemetry loop		
	6a. State the importance of	6.3	Safety Measures in Telemetry
	incorporating safety measures in	6.4	Safety barrier(zone)
	process telemetry	6.5	Isolation of signal (Electrical /
	6b. List Safety Barrier Zones with		optical)
	their types		
	Sefety Parriers		
	6d Justify the need of isolation of		
	process signals in control room		
	to field and vice versa		
	6e. State the procedure to test		
	electrical and optical Isolation		

Unit	Unit Title	Teaching	Distribution of Theory Mar				
		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Telemetry Principles	4	3	5	0	08	
II	Telemetry -Hydraulic and	12	2	10	7	19	
	Pneumatic and Electric						
III	Process Data Multiplexing /	6	2	6	4	12	
	Demultiplexing Techniques						
IV	Process Signal Modulation and	4	2	2	2	06	
	demodulation Techniques						
V	Data Transmission Standards	6	2	6 👝	2	10	
	and Buses						
VI	Optical Telemetry and	10	3	8	4	15	
	Safety Measures			5			
Tota	al	42	14	37	19	70	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of Programme Outcomes/Course Outcomes in *affective domain* as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes/Course domain.

S.	Unit	Practical/Exercise	Approx
No. 🦊	No.	(Course Outcomes in Psychomotor Domain according to	Hrs.
	9	NBA terminology)	Required
1	II	Set up a Basic Hydraulic Telemetry System	4
2	II	Set up a Basic Pneumatic Telemetry System and demonstrate	4
		true and live zeroes	
3	II	Connect a process signal to a given recorder/Indicator using	2
		2-wire electric Telemetry	
4	II	Connect a process signal to a given recorder/Indicator using	2
		3-wire electric Telemetry	
5	II	Connect a process signal to a given recorder/Indicator using	2
		4-wire electric Telemetry	
6	II	Tag a Process System by a tie warp/engraved number	4
		plate/painted for various process signals to a Junction Box and	

S. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA terminology)	Approx Hrs. Required
		diversion of the field to the control panel.	
7	III	Test the operation of Analog-to-digital converter Digital-to- analog converter	2
8	III	Test a multiplexer and demultiplexer for multiprocess signal.	2
9	III	Build a frequency division multiplexing and demultiplexing circuit and to verify its operation for a temperature/pressure/level/flow process signal	2
10	IV	Determine the percentage modulation in a process signal for Amplitude Modulated System using CRO	2
11	IV	Determine the modulation index and bandwidth for various frequency modulating for a temperature/pressure/level/flow process signal	2
12	V	Implement RS 232 standards of serial transmission using hyper terminals of two computers	2
13	V	Implement RS 485 standards of serial transmission using hyper terminals of two computers	2
14	VI	Set up the digital optical channel for transmission of process signal with noise and observe the distortion of the output signal	2
15	VI	Determine the attenuation (dB/km) of optical fiber in transmitting for a temperature/pressure/level/flow process signal	2
16	VI	Test operation of an opto-coupler in transmitting a temperature/pressure/level/flow process signal	2
17	VI	Test safety barrier using Zener diode telemetry system.	2
		Total	42

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. WEB Surfing for Advanced Techniques of Telemetry
- ii. Presenting A Seminar
- iii. Setting up Fibre Optic Control loop
- iv. Setting up Pneumatic Control loop
- v. Setting up Electrical Control loop

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Visits to Industries
- ii. Take small instrumentation components to the class when teaching
- iii. Video or animation films on working of different type of power stations from YouTube and other resources.
- iv. Mini project

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication
1.	Telemetry Principles	D. Patranabis,	TMH, New Delhi latest
			Edition
2.	Telecontrol Methods and	Swoboda G.,	Reinhold Publishing
	Applications of Telemetry and		Corp., London, 1991
	Remote Control		
3.	Data Communication Networks	Sanjay Sharma	S.K.Kataria and Sons,
			New Delhi 2008 or latest
			Edition
4.	Mechanical and Industrial	R.K. Jain	Khanna Publishers New
	Measurements (Process		Delhi Latest Edition
	Instrumentation and Control)		6.0
5.	Optical Fiber Communications,	John M. Senior	Pearson publications,
	3/E		New Delhi latest Edition
6.	Pneumatic Controls	Joji P.	Wiley India Edition,
		9	New Delhi latest Edition
7.	Instrumentation Reference Book	Edited by Walt	B H publications, latest
		Boyes	edition

B) List of Major Equipment/Materials with Broad Specifications

- i. 2 Nos. Of Computers with DACs & Printer
- ii. Optical Fiber Testing Bench
- iii. All Types of Modulating and Demodulating Cards for Process Signals
- iv. All Types of Mulitplexing and Demultiplexing Cards for Process Signals
- v. Tranreceiver Set for
- vi. Hydraulic Telemetry Test Bench
- vii. Pneumatic Telemetry Test Bench
- viii. Electric Telemetry Test Bench
- ix. Precision Measuring Instruments for a temperature/pressure/level/flow process signal
 - x. Safety Barrier Test Bench
- xi. Test Bench for Industrial Buses

C) List of Software/Learning Websites

- i. <u>http://enginemechanics.tpub.com/14105/css/14105_31.htm</u> for hydraulic transmission
- ii. <u>http://www.fiber-optics.info/articles/couplers_splitters</u> for fiber optics system components
- iii. http://www.becbapatla.ac.in/ece/lab/EC%20351%20AC.pdf --- for practical

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. R.R. Manchiganti, HOD IC Engineering, Govt. Polytechnic Gandhinagar
- Prof. R.P. Merchant, HOD IC Engineering, Govt. Polytechnic Gandhinagar
- Prof. M.N. Mulchandani, OSD Continuing Education Centre, Ahmedabad
- Prof. S. K. Raval, Lecturer IC(SG) Engineering, Govt. Polytechnic Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Anjali Potnis, Associate Professor, Department of Electrical and Electronics Engineering
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering

GTU/NITTTR/Bhopal/13-14

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

DIGITAL TECHNIQUES (Code: 3331703)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	3 rd semester

1. RATIONALE

Digital electronics and techniques are almost part and parcel of any modern industrial equipment. Integrating industrial process signals for logical and mathematical operations, using combinational and sequential logic for process control components are some of the skills required in this area by IC engineers. This requires every diploma engineer to possess the basic skills of digital techniques to maintain various digitally controlled industrial process systems effectively and efficiently. Hence, this course has been designed to fulfill this purpose.

2. COMPETENCY ('Programme Outcome' according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain various industrial process control systems which are digitally controlled.

3. TEACHING AND EXAMINATION SCHEME

Tea	ching So	cheme	Total Credits]	Examinatio	n Scheme	
9	(In Hou	rs)	(L+T+P)	Theory	Marks	Practica	l Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
4	0	2	6	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

A.,

4. COURSE DETAILS

	Major Learning Outcomes	Topics and Sub-topics
Unit	('Course Outcomes' in Cognitive	
Omt	Domain according to NBA	
	terminology)	
Unit – I	1a. Represent given number in the	1.1 Number systems: Decimal, Binary,
Number	other given number system.	Octal and Hexadecimal
Systems	1b. Perform arithmetic operations on	1.2 Binary arithmetic Operation:
	binary numbers.	addition, subtraction.
		multiplication and division
	1c. Obtain 1's and 2's compliment	1 3 Compliments: 1's and 2's
	of given binary number.	compliments subtraction by 1's
	1d. Subtract given binary numbers	and 2's compliment method
	using 1's and 2's compliment	
	method	
	1c Convert the given number from	1.4 Conversion: Binary to decimal
	one number system to another	octal, hexadecimal conversion and
	number system	vice versa Octal to decimal
		hexadecimal, binary conversion and
		vice-versa, hexadecimal to octal.
		decimal. Binary and vice versa.
Unit – II	2a. Select electrical levels for '0'	2.1 Two state operation
Logic Gates	and '1' on and off Low and High	2.2 Positive and negative logic system
and Boolean	logical operation.	2.3 Tristate logic operation
Algebra	2b. Differentiate between positive	F
	and negative logic system.	
	2c. State tri-state operation.	
	2d. Draw the symbol and equivalent	2.4 Basic gates : AND, OR, NOT Gate,
	electrical circuits of given gates.	universal gates: NAND and NOR,
	2e.Explain functionality of any gate	other gates: EX-OR, EX-NOR
	with the help of its truth table.	Equivalent electrical circuits, truth
	2f. Implement basic gates and other	table and functional operation of
	gates with the help of universal	each gates
	gate.	C
	2g. State and verify First and	2.5 De Morgan's theorems
	Second De Morgan's theorem.	C
	2h. State Theorems of Boolean	2.6 Laws, theorems and postulates of
	algebra.	Boolean algebra
	2i. Simplify the given expression	2.7 Boolean expression: Sum of
	using Boolean algebra and	products and product of sums
	Karnaugh map method (up to 4	2.8 Karnaugh map method for
	variables).	simplification of Boolean
	2j. Realise logic circuits of the	expression
	simplified expression using truth	-
	table and AND-OR/ OR-AND/	
	NAND-NAND logic gates.	

	Maior Looming Outcomer	Tonios and Sub tonios
Unit	('Course Outcomes' in Cognitive	Topics and Sub-topics
Umt	Domain according to NBA	
Unit – III Combinatio nal Logic Circuits	 3a. Define combinational logic circuit. 3b. Test the logic circuits with the help of truth table. 	 3.1 Combinational logic circuit. 3.2 Arithmetic Circuits: Half adder, full adder, half and full subtractor, 1's and 2's compliment subtractor circuit, 2's compliment subtractor/adder circuit.
	3c. Convert given numbers from binary to Gray and Gray to binary codes.	3.3 Code Converters: Binary to gray and gray to binary code converters (up to 4 bit).
	3d. Explain working of various given combinational circuits with logic diagram and truth table.3e. List IC numbers of given combinational circuits.	 3.4 Decoder (3 to 8), Encoder circuits (8 to 3). 3.5 Parity bit Generators and Checker circuits. 3.6 Multiplexer (4:1line), Demultiplexers (1:4 line).
Unit – IV Sequential Logic Circuits	4a. Define terms related to sequential logic circuits.	4.1 Digital clock signal, clock skew, duty cycle, synchronous and asynchronous circuit operation, Edge and Level triggered operation.
	 4b. Differentiate between combinational and sequential circuit. 4c. Explain the truth tables of the given Flip flops. 4d. List the applications of Flip- Flop. 	4.2 Flip-Flops: S-R, J-K, T and D. Truth table and logic circuits of each flip-flop
	 4e. Define register and shift register. 4f. Describe with sketches the data movement in shift registers. 4g. List the applications of shift register in digital instruments. 	4.3 Shift Registers: Series and parallel, shift, Serial in serial out, Shift Register.
	 4h. List various counters. 4i. Explain the function of ripple counter (implemented using JK Flip flops) with the help of truth table. 	4.4 Counters: Ripple counter, Mod counter, up – down counter, synchronous and asynchronous counters
	 4j. Classify types of conversions. 4k. List applications of A/D and D/A Conversion in instrumentation 4l. Describe the block diagram of sensing motion. 	4.5 A/D and D/A Converter4.6 Digital Clock

Unit	Major Learning Outcomes ('Course Outcomes' in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
	4m. Describe with block diagram working of a digital clock.	
Unit – V Control and Interfacing of process	5a.Develop logic signals (0 and 1)5b. Sketch the logic circuit for logical operations	5.1. Process Logic components for <i>level control</i> loop: Level Switch configuration: HL, HH, HHL, HHH, LL, LLL and LLH.
parameters	5c.Develop logic signals (0 and 1)5d. Sketch the logic circuit for logical and mathematical operations.	5.2. Process Logic components for <i>Temperature control</i> loop: Temperature Switch configuration: HL, HH, HHL, HHH, LL, LLL and LLH.
	5e.Develop logic signals (0 and 1)5f. Sketch the logic circuit for logical operations	5.3. Process Logic components for <i>Pressure control</i> loop: Pressure Switch configuration: HL, HH, HHL, HHH, LL, LLL and LLH.
	5g. Develop logic signals (0 and 1) 5h. Sketch the logic circuit for logical and mathematical operations.	5.4. Process Logic components for flow control loop: Flow Switch configuration: HL, HH, HHL, HHH, LL, LLL and LLH.
	5i. Develop logic signals (0 and 1)5j. Sketch the logic circuit ircuit for logical operations	5.5. Process Logic components for Speed control loop: Speed Switch configuration: HL, HH, HHL, HHH, LL, LLL and LLH.

5. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Number Systems	12	04	08	02	14
Π	Logic Gates and Boolean Algebra	12	04	04	06	14
III	Combinational Logic Circuits	12	02	04	08	14
IV	Sequential Logic Circuits	08	02	02	03	07
V	Control and Interfacing of process	12	03	06	12	21
	parameters					
	Total	56	15	24	31	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of Programme Outcomes/Course Outcomes in *affective domain* as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S.	Unit	Practical/Exercise	Apprx.
No.	No.	('Course Outcomes' in Psychomotor Domain according to	Hrs.
		NBA terminology)	Required
1.	II	Test the functionality of basic logic gates.	2
2.	II	Build/ test the functionality of exclusive-OR gate.	2
3.	II	Build/test the functionality of NAND gate as a universal logic	2
		gate.	
4.	II	Build/test the functionality of NOR gate as a universal logic	2
		gate .	
5.	III	Build/test the HALF ADDER circuit.	2
6.	III	Build/test the FULL ADDER circuit.	2
7.	III	Build/test HALF SUBTRACTOR circuit.	2
8.	III	Check the functionality of parity /generator checker circuit.	2
9.	IV	Build/ Test the Ripple counter(Four bit).	2
10.	IV	Check the performance of SEVEN SEGMENT display.	2
11.	IV	Build/ Test the functionality of SR flip-flop.	2
12.	IV	Build/ Test the functionality of JK flip-flop.	
13.	IV	Build/ Test the shift register.	2
14.	IV	Determine the digital output for the given analog input signal	2
		through analog to digital converter circuit.	
15.	IV	Determine the analog output for the given digital input the	2
		digital to analog converter circuit.	
16.	V	Build/ Test AND, OR, EX-OR Logic circuits for temperature	2
		loop.	
17.	V	Build/ Test AND, OR, EX-OR Logic for level loop.	2
18.	V	Build/ Test NAND, NOR Logic for temperature loop.	2
19.	V	Build/ Test NAND, NOR Logic for level loop.	2
20.	V	Build/ Test AND, OR, EX-OR Logic for flow loop.	2
21.	V	Build/ Test NAND, NOR Logic for flow loop.	2
		Total	42

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Students may be asked to collect photographs using internet which is relevant to field application of various topics and have to prepare learning materials using it.
- ii. Teachers guided self learning activities, Course/library/internet/lab based mini projects, industrial visit etc.
- iii. Students activities like: course/ topic based seminars, Internet based assignments.
- iv. Students should deliver a seminar in groups on materials used in various Digital Techniques and advances/latest trends in Digital Techniques.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Take small instrumentation components to the class when teaching
- ii. Give simple numerical to students on Boolean Algebra
- iii. Internet based home assignments
- iv. Mini project

9. SUGGESTED LEARNING RESOURCES

A) List of Books:

S.	Title of Books	Author	Publication
No.			
1	Digital circuit	Kumar, Ananad	PHI Learning, New Delhi , Latest edition
2	Digital Electronics	Kharate, G.K.	Oxford University Press, Latest edition
3	Principles of digital electronics	Malvino and Leach	TMH, New Delhi, Latest edition
4	Digital Design	Mano , M. Morris	Pearson, New Delhi, Latest edition
5	Digital electronics : Principles,	Maini ,A .K.	John Willy and Sons, Latest edition
	devices and applications		
6	Digital Techniques	Godse ,A.P.	Technical publications, Latest edition
7	Applied Instrumentation in the	William G. Andrews	Gulf Publication, London, Latest edition
	Process Industries		

B) List of Major Equipment/Materials with Broad Specifications

- i. Bread boards
- ii. DC Regulated power supply 0-30 volt DC (10 Nos.)
- iii. Digital IC Tester (40 pins)
- iv. Digital Logic trainer kit (10 Nos.)
- v. Hardwired relay logic trainer (5 Nos.)
- vi. Digital level switch, temperature switch, flow switch with logics HL, HH, HHL, HHH, LL, LLL and LLH.

C) List of Software/Learning Websites

- i. www.nptel.com
- ii. http://en.wikipedia.org/wiki/Digital_electronics
- iii. <u>http://my.safaribooksonline.com/book/electrical-engineering/computer-</u> engineering/9780750645829/chapter-10dot-instrumentation-and-interfacing/
- iv. http://www.hss.energy.gov/deprep/ftcp/directives/QSR-InstrumentationControl.pdf

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- **Prof. R. R. Manchiganti**, HOD IC Engineering, Govt. Polytechnic, Gandhinagar
- **Prof. M.V. Dabhi**, Lecturer IC Engineering, Government Polytechnic Gandhinagar
- Prof. R.D. Sathwara, Lecturer IC Engineering, Govt. Polytechnic. Gandhinagar
- **Prof. A.M. Patel,** Lecturer IC Engineering, Government Polytechnic, Palanpur

Faculty Members from NITTTR Bhopal

- **Dr. Anjali Potnis**, Associate Professor, Department of Electrical and Electronics Engineering.
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

CONTROL COMPONENTS (Code: 3331704)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	3 rd semester

1. RATIONALE

For a diploma Instrumentation engineer, before knowing the control action fundamentals, it is important to maintain and calibrate different process instrumentation components used for controlling the process parameters. Hence the students will have to understand the construction, working and applications of various control instruments. Therefore, this course has been designed to maintain control components of the instrumentation loop.

2. COMPETENCY ('Programme Outcome' according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain control components of instrumentation loop.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits				Exa	mination S	cheme	
((In Hours)	(L+T+P)	Theory Marks Practica		Theory Marks Practical Marks		Total Marks
L	ТР	С	ESE	PA	ESE	PA	200
3	0 4	7	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning Outcomes ('Course Outcomes' in	Topics and Sub-topics		
Unit	Cognitive Domain according to NBA terminology)			
Unit – I Control Valve	 1a. Define the valve parameters 1b. Name at least 7 types of control valve used in the industry. 1c. Describe the construction of at least 4 types of control valve 1d. Describe the functions of parts of control valves. 1e. State the procedure to test and calibrate 1i. Classify control valves based on plug shapes and actuators 1j. Describe the working of a least 2 actuators and positioners with sketches and application 1k. Describe the characteristics of the actuators and positioners 11. State the procedure to test and calibrate the actuators and positioners. 	 1.1. Control valve parameters: Rangeability, Hysteresis, Capacity, Linearity, etc. 1.2. Control valves in industries - Globe, Ball, Butterfly, Needle, Pinch, Diaphragm, Solenoid, Piston type valve (single acting/double acting). 1.3. Basic Parts of Control Valve: valve body, Trim, Stem, Plug, Cage, Seat, Bonnet, Actuator. 1.4. Flow characteristics of control valve 1.5. Calibration procedure 1.6. Classification of control valve as ATO/ATC, Linear/Rotary, Manually operated/Remote operated, Based on plug shapes, based on actuators 1.7. Valve actuators: Mechanical, Pneumatic (Diaphragm, piston), Hydraulic Electropneumatic, electrical 1.8. Valve Positioners: Mechanical, electrical 1.9. Calibration procedure 		
Unit – II Pneumatic Components	 2a. State the need of pneumatic components 2b. Explain the working of pneumatic components with sketches 	Pneumatic Components: Flapper-Nozzle, Air Filter Regulator lubricator, Volume Booster, Pneumatic Relay-Bleed/ Non- bleed, Direct/Reverse		
Unit – III Piping Components	3a.Describe applications of each piping components with sketches	Piping component: Hydraulic Metallic, plastic) and Pneumatic (copper, steel, plastic) piping components- Mufflers, Reducers, Silencer, Bends, tees (equal, unequal), flanges, couplings (spring loaded\threaded),etc.		
Unit – IV Control System Components	 4a. Classify control system components 4b. Describe the construction of control system components with sketches 4c. Explain working principle 	 4.1. Control System Components: Synchros and Resolvers Servomotor-AC/DC 4.2. Stepper Motor-Variable reluctance, Permanent Magnet, Hybrid (CAV/CLV) 		

Unit	Major Learning Outcomes ('Course Outcomes' in	Topics and Sub-topics
Unit	Cognitive Domain according to NBA terminology)	
	 control system components 4d. State the procedure to test the control system components 4e. Explain the working of a typical Gyroscope 	 4.3. Potentiometer and gyroscope: Potentiometer- Linear and log (Linear, Rotary) Potentiometer as an error detector 4.4. Gyroscope working principle
Unit V Safety and Auxiliary Components	 5a. Identify the various types of relays, switches and auxiliary components from the list of given symbols. 5b. Classify the various types of safety and auxiliary components 5c. Explain the working of the various types of safety and auxiliary components 5d. State the testing procedure of the various types of safety and auxiliary components 	 5 Safety and auxiliary components: a. Relays: Electromechanical, Reed, Solid state and Field Failure relay b. Switches Toggle switch: SPST, SPDT, DPST, DPDT Push Button DIP switch Self illuminated resettable switch Rotary switch(Single pole/Multi pole) vi. Thumbwheel switch vii. Limit switch (mechanical lever type) viii. Proximity Switch: inductive, capacitive, optica Flow switch: HHL, HL, LL, LLL Pressure switch: HHL, HL, LL, LLL Xi. Thermostat: HHL, HL, LL, LLL xii. Thermostat: HHL, HL, LL, LLL c. Auxillary Components: Alarm Annunciator, Square Root Extractor, Damper, Safety Valve, Relief Valve, Rupture Disc, Safety Relief Valve

5. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Control Valves	12	04	09	12	25
II	Pneumatic Components	04	01	02	02	05
III	Piping Components	04	01	02	02	05
IV	Control System Components	12	02	03	10	15
V	Safety and auxiliary components	10	02	04	14	20
To	otal	42	10	20	40	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of Programme Outcomes/Course Outcomes in *affective domain* as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes/Course Outcomes related to affective domain.

S.	Unit	Practical/Exercise	Approx.
No.	No.	('Course Outcomes' in Psychomotor Domain according to	Hrs.
		NBA terminology)	Required
1	Ι	Identify and Label basic parts of control valve.	2
2	Ι	Identify the type of valve from its construction.	2
3	I	Calibrate control valve.	2
4	I	Obtain the Globe valve characteristics.	2
5	I	Plot the graph of valve characteristics for given Ball valve.	2
6	Ţ	Plot the graph of valve characteristics for given Butterfly valve.	2
7	Ι	Plot the graph of valve characteristics for given Needle valve.	2
8	Ι	Plot the graph of valve characteristics for given Pinch valve.	2
9	Ι	Plot the graph of valve characteristics for given Solenoid valve.	2
10	Ι	Plot the graph of valve characteristics for given Piston type valve.	2
11	Ι	Plot the graph of valve opening vs input air signal for given air to	2
		open type of valve.	
12	Ι	Plot the graph of valve opening vs input air signal for given air to	2
		close type of valve.	
13	Ι	Differentiate between the performance of rotary valve and linear	2
		valve.	
14	Ι	Devise a plan to check working of electro pneumatic valve	2

		actuator.	
15	Ι	Observe the valve opening status at different pressure levels in	2
		pneumatic valve actuators.	
16	Ι	Maintain pneumatic piston-cylinder actuator.	2
17	II	Plot the graph of voltage v/s pressure for given flapper nozzle	2
		system +	
18	II	Analyze the effect of volume booster in line .	2
19	II	Test the air lock relay.	2
20	II	Check and observe the output reading of air filter regulator.	_ 2
21	III	Check the effect of silencers, mufflers and reducers in hydraulic	
		lines.	
22	IV	Examine the design of a 3-phase synchronous motor and learn	2
		how to connect it.	
23	IV	Obtain Synchronous motor starting characteristic and determine	2
		the full-load and pull-off characteristic of a synchronous motor.	
24	IV	Connect potentiometer as an error detector.	2
25	IV	Wire a servo motor and control it using labview program.	2
26	IV	Control the steps of stepper motor by varying the input pulse.	2
27	V	Test the given electro mechanical relay by energizing its coil.	2
28	V	Test the given reed relay by energizing its coil.	2
29	V	Test the given solid state relay(SSR) by energizing its coil.	2
30	V	Test the given Field failure relay by energizing its coil.	2
31	V	Test the operation of flow switch.	2
32	V	Test the operation of thermostat.	2
33	V	Test the operation of Pressure switch.	2
34	V	Test the operation of Humidistat.	2
35	V	Test the operation of Level switch.	2
36	V	Test the operation of given limit switch.	2
37	V	Test the operation of given proximity switch.	2
38	V	Test the operation of Toggle switch.	2
39	V	Test the operation of DIP switch.	2
40	V	Test the operation of Rotary switch.	2
41	V	Test the operation of Thumbwheel switch.	2
,,		Total	84

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Dismantle the control valve in order to recognize its internal parts.
- ii. Calibrate the control Valve.
- iii. Use proper piping elements for proposed hydraulic line.
- iv. Control Temperature of given loop using thermostat.
- v. Control Pressure of given loop using pressure switch.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Visits to Industries
- ii. Take small instrumentation components to the class when teaching
- iii. Video films/animation films on working of different type of power stations from YouTube and other resources
- iv. Mini project

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication
1	Control system components	B. Chatterjee	Khanna Publishers,
			latest edition
2	Control system components	M D Desai	PHI Learning,
3	Applied instrumentation in	W. G Andrews	Gulf Publishing co.,
	process industries		Houston
4	Instrumentation engineer's	B.G Liptak	Chilton Book Co.,
	handbook		Philadelphia
5	ISA handbook of control valves	James W Hutchison	ISA
6	Instrumentation and Control	D S Kumar	
	systems		
7	Valve selection handbook	R W Zappe 🥂	Gulf Publishing Co.,
			Houston

B) List of Major Equipment/Materials with Broad Specifications

- i. Pliers,Screwdriver and other hand tools
- ii. Multimeter
- iii. Voltage Source
- iv. pressure source
- v. Air compressor

C) List of Software/Learning Websites

- i. www.control.com
- ii. En.wikipedia.org
- iii. www.youtube.com
- iv. www.valveinternational.co.za
- v. books.google.com

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. M. Patel, HOD IC Engineering, Govt. Polytechnic, Palanpur
- Prof. N. B. Mehta, Lecturer IC Engineering, Govt. Polytechnic, Ahmedabad
- Prof. M. J. Dehlvi, Lecturer IC Engineering, Govt. Polytechnic, Gandhinagar

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering
- Dr. Shashikant Gupta, Professor and Coordinator for State of Gujarat

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT Course Curriculum

PROCESS APPLICATION AND INSTRUMENTATION MAINTENANCE MANAGEMENT

(Code: 3331705)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	3rd semester

1. RATIONALE

In the present industrial scenario, it is desired that diploma engineering students should be able to identify, classify, troubleshoot and maintain the different Process Instrumentation systems. They are required to implement the planned Plant Process Instrumentation maintenance schedules. Therefore, this course has been designed so that students may learn to maintain the different types of Process Instrumentation Systems of Process Application.

2. COMPETENCY (Programme Outcome' according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency: Maintain the different types of Process Instrumentation Systems of Process Application

3. TEACHING AND EXAMINATION SCHEME

T S	'eaching Scheme		Total Credits	Examination Scheme				
		2	Theory	Marks	Practi Marl	cal KS	Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	150
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit;; ESE - End Semester Examination; PA - Progressive Assessment.

Unit	Major Learning Outcomes ('Course Outcomes' in Cognitive Domain according	Topics and Sub-topics	
	to NBA terminology)		
Unit – I			
Process Applications using	1a. Classify the various types	1.1 Types of Processes based	
Instrumentation	of processes.	on:	
	1b. Compare the specific need	1.1.1 Period of operation of	
	of Maintenance in batch	the	
	process and continuous process	process viz. Batch	
	of them	process,	
		Continuous process	
		1.1.2 Type of Process:	
		Unit operation /Unit Process/	
	(Composite / Hybrid Processes	
	1c State Maintenance	1 2 1 For Food and Beverages	
	requirement for various process	industries(bottle filling plant-	
	industries and state hazards (if	hatch process)	
	not maintained)	1.2.2.For Thermal Power	
		Plant(material feeding in	
		boiler to turbine-continuous	
		process)	
Unit– II	2a. Classify and define the	2.1 Time based Maintenance:	
Insrumentation	types of maintenance	a)Preventive	
Maintenance	0.1	(shift wise, daily, weekly,	
Engineering Techniques		monthly, quarterly half	
		yearly, yearly)	
		b) Shutdown	
		c) Break down	
		2.2 Event based Maintenance-	
		a)Run to Failure or Reactive	
		b)Event driven	
		c)Calendar based or Pre-	
		d)Statistical based	
		e)Condition based	
		Deredictive Maintenance	
		a)Reliability Centered	
		Maintenance	
		h)Financially Optimized	
		Maintenance	

4. COURSE DETAILS

	2b Define terminology	2.3 List of terminology
	Delated to Maintenance in	2.3 List of terminology
	Related to Maintenance III	2.5.1 Autonomous
	Process industries.	Maintenance,
		2.3.2 Bill of Materials
		(BOM),
		2.3.3 Computerized
		Maintenance
		Management System
		(CMMS).
		2.3.4 Corrective
		Maintenance
		2.3.5 Failure Mode and
		Effects Analysis
		(FMFA) Frequency of
		Inspection
		2 2 6 - Vay parformance
		2.5.0 Key performance
		2 2 7 Life Cycle Cost
		(I CC)
		2 2 8 Maintananaa
		2.3.6 Waintenance,
		2.5.9 Wallitenance
		Engineering
		2.3.10 Waintenance
		Management,
		2.3.11 Mean Down Time
		(MD1),
		2.3.12 Mean Time Between
		Failures (MTBF),
		2.3.13 Mean Time To Repair
+		(MTTR),
		2.3.14 Purchase Order (PO,
		2.3.15 Root Cause Failure
		Analysis (RCFA),
		Scheduling,
		2.3.16 Uptime,
		2.3.17 Work Order,
		2.3.18 Work Request
Unit–III	3a. Test each type of	Types of Instruments in the
Field, Utility and Safety	Instruments.	process plants:
Instrumentation	3b. Describe the calibration	3.1. Indicating instruments:
Components	procedure for each type	3.1.1. Analog Temp. indicator
Maintenance	Of instruments.	3.2. Recorders:
	3c. Describe the maintenance	3.2.1 Circular Chart,
	procedure for each type	3.2.2 Strip Chart
	Of instruments.	3.3. Transmitters :

Unit– IV Instrumentation Maintenance Hardware and Software	 4a. Describe the application of each tools used for Maintaining Instruments. 4b. Describe the procedure to maintain and calibrate the tools used for Maintaining Instruments 	 3.3.2 Pneumatic Differential Pressure Transmitter 3.4 Switches: 3.4.1.Pressure Limit Switch 3.4.2 Level Limit Switch 3.5. Valves: 3.5.1 Globe valve 4.1List of tools: 4.1.1 Dead weight Tester 4.1.2 Temp. Controlled Bath, 4.1.3 Temp. Controlled Oven 4.1.4 Assorted Pneumatic and Hydraulic tubing/ piping tools 4.1.5 Pnematic Calibrator, 4.1.6 Electronic Calibrator, 4.1.7 Thermo Couple Calibrator. 4.1.8 Digital Multimeters with True RMS, 4.1.9 Soldering / Desoldering Station, 4.1.0 Universal Calibrator
Unit – V Instrumentation maintenance reporting and management	5a. List and give various Types of reporting Formats with sample data Used in instrumentation Maintenance management System.	5.1. Reports: Instrument bin card, instrument log book, maintenance indent book (physical, human resource) instrument complaint book

5. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

			Distribution of Theory Marks				
Unit No.	Unit Title	Teaching Hours	R Level	U Level	A Level	Total	
	Process	6	3	3	2	8	
Ι	Application						
	s using						
	Instrumentat						
	ion			-			
	Insrumentati	6	6	6	0	12	
11	on						
	Maintenanc				O		
	e .						
	Engineering						
	Techniques	10	~		10	20	
TTT	Field Utility	12	5	2	10	20	
111	and Safety			(7) Y			
	Instrumentat						
	IOII						
	Components		-00				
	, Maintanana						
	U Insrumentati	11	5	5	10	20	
IV				5	10	20	
1 V	Maintenanc						
	P						
	Hardware	6					
	and	0.					
	Software						
	Instrumentai	7	2	5	3	10	
V	on			_	_	-	
	maintainenc						
	e reporting						
	and						
	managemen						
	t						
	Total	42	21	24	25	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance. **Note**:

Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in** *affective domain* as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical Exercise('Course Outcomes' in Psychomotor Domain according to NBA terminology)	Approx Hours Required		
1.	I Identify the continuous process from a textile industry.				
2.	I Identify the batch process from a textile industry .				
3.	I Prepare a daily maintenance schedule for a given process.				
4.	Ι	Prepare a weekly maintenance schedule for a given process.	02		
5.	Ι	Prepare a monthly maintenance schedule for a given process.	02		
6.	I	Prepare a half-yearly maintenance schedule for a given process.	02		
7.		Prepare a yearly shut down maintenance schedule for a given process.	02		
8.	Ι	Maintain the indicating instruments for a given process.	02		
9.	II	Maintain the controlling instruments for a given process.	02		
10.	II	Maintain the recording instruments for a given process.	02		

11.	III	Maintain the final control elements/instruments for a given process.	02
12.	IV	Test the performance of the final control elements/instruments for a given process	02
13.	V	Log the maintenance activity carried out for a given process.	02
	V	Carry out maintainance activity with Antivirus /	02
14.		Authorization/ Password for a given computerized	
		maintenance management software.	20
	Total		28

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students may be given exercises based on various instrumentation devices and components to maintain related to above topics.
- ii. Students may be asked to collect photographs using internet which is relevant to field application of various topics and have to prepare learning materials using it.
- iii. Teachers guided self learning activities, Course/library/internet/lab based mini projects, industrial visit etc.
- iv. Students activities like: course/ topic based seminars, Internet based assignments.

8 SUGGESTED LEARNING RESOURCES

A) List of Books

S.No.	Author	Title of Books	Publication/Year
	ld Goettsche.	Maintenance of	ISA 2nd Edition ld
1	0.1	Instruments and	Goettsche
		Systems,.	
	Lindley R. Higgins,	Maintenance	
2	R. Keith Mobley,	Engineering	
	Darrin Wikoff	Handbook, Seventh	
		Edition	
	W G Andrew	Applied	Gulf Publication
3		Instrumentation to	Vol 1 to 4
(A)		Process Industries	
	Jones E. B.	Instrument	Hollywell Vol - I, II
4		Technology,	
	H. S Kalsi	Electronic	TMH New Delhi
5		Instrumentation	2010

....

B. List of Major Equipment/ Instrument with Broad Specifications 1) Instrument Maintenance Shop Tools

- a) Dead weight tester / Comparison Guage,
- b) Temp. Controlled Bath,
- c) Temp. Controlled Oven,
- d) Assorted Pneumatic and Hydraulic tubing/ piping tools,
- e) Pnematic Calibrator, Electronic Calibrator,
- f) Thermo Couple Calbrator, Indicator puller,
- g) Impulse line bending and flaring tools, Allenkey set,
- h) Open and Ring fix Spanner set,
- i) Adjustable pipe wrench and Spanner,
- j) Screw Driver set,
- k) Digital Multimeters with True RMS 41/2 Digit,
- l) Clip on meters,
- m) Assorted Eletrical Insulated Tools set,
- n) Soldering / Desoldering Station,
- o) Drilling M/c,
- p) Mini Compressor,
- q) Mechanical Vice,
- r) Megger / insulation tester,
- s) Fibre Optic assorted tools Splicer, Alignment tool, cutter, Splitting Tools, All assorted
- t) Magnetic tools,
- u) All maintenance Consumables viz, Isopropyle Alcohol, Silicon Oil, Sprays, CTC ,Thermic
- v) Fluids ,Silicon Grease, Graphite based Grease, Clove Oil, Chart recorder Inks Red/ Blue/
- w) Black

2) Standards Equipment Room Equipment

- a) High precision dead weight tester (customs design)
- b) High precision voltmeter
- c) General purpose oscilloscope
- d) Stabilized power supply (high precision-high and low voltage)
- e) High precision weighing balance
- f) Precision resistance thermometers
- g) One set of glass thermometers $(-5 \text{ to } +250^{\circ}\text{c})$
- h) Precision variable resistance (decade box)
- i) Whetstone bridge
- j) High precision barometer
- k) High precision dew point hygrometer
- 1) Standard platinum resistance
- m) Precision current source
- n) Flat bed recorder
- o) Standard thermocouples

erson

3) Pneumatic 'shop'

- a) Precision pressure regulator
- b) Pneumatic test rig for controllers (depending on manufacturer)
- c) Set of precision gages
- d) Low pressure/vacuum calibration system
- e) Pneumatic calibration unit
- f) Digital pressure calibrator (300 mbar)
- g) Digital pressure calibrator (1.6 bar)
- h) Digital pressure calibrator (10 bar)
- i) High pressure test kit (200 bar)
- j) Portable low pressure pump
- k) Portable calibrator
- 1) Pneumatic calibrator- electro
- m) Pneumatic calibrator
- n) Absolute pressure unit

4) Electronic 'shop'

- a) Portable temperature indicator ($6\frac{1}{2}$ digits)
- b) Portable multivolt meter ($6\frac{1}{2}$ digits)
- c) Whetstone bridge
- d) Variable resistance (decade box)
- e) Analogic voltmeter multi-function
- f) Logic analyzer
- g) Electronic voltmeter
- h) Digit al counter frequency meter
- i) Universal impedance measuring bridge
- j) Adjustable and portable power supply (high + low voltage)
- k) Function generator
- 1) Programmable pulse generator
- m) General purpose oscillator
- n) Transistometer
- o) Stroboscopic tachometer
- p) Calibration set for vibration monitor
- q) Digital circuit tester
- r) Milli-ohm meter (in 0.001 ohm steps)
- s) High resistance meter (500 kohms)
- t) Pt 100 simulator
- u) Flat bed recorder (dual bed)
- v) Portable tachometer
- w) Xy recorder (dual bed)
- x) Set of standard resistors (10 000 to 1 000 ohm)

- y) Set of standard platinum resistances
- z) Test oscilloscope microprocessor (to be kept in the control room, for integrated control systems)

ets.o

- aa) Digital oscilloscope with memory
- bb) Low-voltage megger (50 volts)
- cc) High-voltage megger (500 volts)
- dd) Earth fault detector
- ee) Specific 'manufacturers' calibrator
- ff) Cold junction reference
- gg) Computer peripherals.

5) Special Test-Benches

- a) Control valve
- b) Hydraulic (portable type)
- c) Temperature.

6) Standard Test-Benches

- a) Light Duty
- b) Pneumatic
- c) Electronic
- d) Dcs And Plc
- e) Analyzer (General Duty)
- f) Analyzer (specific duty)

7) **Test equipment**

- a) Set Of Precision Pressure Gages
- b) Low-Pressure Calibration Unit (Including Vacuum)
- c) Set Of Digital Pressure Calibrators (300 Mb To 10 Bar)
- d) Pneumatic Portable Calibration Unit (0.2 To 1 Bar)
- e) Portable Temperature Indicator (Tc Simulator)
- f) One Or Two Electronic Digital Accurate Voltmeters
- g) Variable Resistance (Decade Box)
- h) Portable Oscilloscope (General Purpose)
- i) Pt 100 Simulator Calibrator
- j) Portable Tachometer
- k) Manufacturer's' Calibrator(S)
- 1) Portable Pulse And Function Generator
- m) Portable Variable Power Supply (Amps/Volts).
 - i) b) Standard Voltage/frequency Sources

8) List of Software/Learning Websites

- a) Predictive Maintenance software module of DCS
- b) Instrumentation Preventive Maintenance software.
- c) www.mainpac.com/ Maintenance Software

- d) http://confirm.pbbiblogs.com/2009/11/28/8-types-of-maintenance-a-comparison/
- e) www.maintenancephoenix.com/.../8-steps-to-success-in-maintenance-
- f) www.reliabilityweb.com/.../Maintenance%20Scheduling%20101.pdf
- g) Maintenance Event Builder (MEB). Soft ware
- h) www.clicksoftware.com/service_schedule
- i) www.mainpac.com/ Maintenance Software
- j) http://www.mainpac.com.au/ Preventive Maintenance Software
- k) www.clicksoftware.com/service schedule SOFTWARE

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

Visits to Industries Take small instrumentation components to the class when teaching Internet based home assignments Mini project

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnic

- 1. **Prof.R.R. Manchiganti**, HOD IC Engineering, G. P. Gandhinagar
- 2. Prof. N.B.Mehta, Lecturer IC Engineering, Government Polytechnic Ahmedabad
- 3. **Prof. H.P.Patel**, Lecturer IC Engineering, Government Polytechnic Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- 1. Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering.
- 2. Dr. Shashikant Gupta, Professor and Cordinator for State of Gujarat.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

INSTRUMENTATION DRAWING (Code: 3331706)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	3 rd semester

1. RATIONALE

For an Instrumentation and control diploma engineer, it is important to interpret relevant circuit diagrams with the symbols, draw circuit diagrams and identify the various components relevant to process and instrumentation. These drawings could be of process and instrumentation diagram, process flow sheets, instrument location plan and such others. Ability to document as per international codes and practices (ISA, IEEE, NEMA) is also an essential skill required by IC engineer. This course will therefore help the students to develop the skills to draw and interpret requisite process instrumentation loop diagrams (using knowledge of relevant symbols and standard conventions) and to document records properly.

2. COMPETENCY ('Programme Outcome' according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Draw requisite process instrumentation loop diagrams using standard symbols and conventions.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits			Examination Scheme					
	(In Ho	urs)	(L+T+P)	Theory Marks Practical Marks		Total Marks		
L	Т	Р	С	ESE	PA	ESE	PA	100
0	0	4	4	0	0	40	60	100

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

Unit	Major Practical Learning Outcomes ('Course Outcomes' in Cognitive Domain	Topics and Sub-topics	
	according to NBA		
Unit – I	1a Identify the symbols	1.1 Process line symbols	
Process	1b Draw the symbols	1.2 Symbols of valves (gate, globe, needle, ball	
Process Flow Sheet Symbol	1b Draw the symbols 1c Label the symbols	 1.2 Symbols of valves (gate, globe, needle, ball valve, vee, three way, four way, angle, plug, check, butterfly valve) 1.3 Symbols of actuator with and without positioner or other pilot. 1.4 Furnace and boiler symbols("A" Frame, Box type, single coil Radiant type, Vertical, Boiler fired or waste heat) 1.5 Heat transfer symbols (Water cooled exchanger, Water cooled condenser, Shell and tube exchanger, Cooling tower, kettle – thermo siphon type Re-boiler , Super heater and re heater, Barometric condenser) 1.6 Pump and compressor(centrifugal, reciprocating, rotary, proportioning, lower or fan centrifugal) 1.7 Drivers(Motor, engine, turbine and steam piston) 1.8 Process pressure vessels (Horizontal, vertical, jacketed) 1.9 Dryers (Batch, Spray, Desiccant, rotary drum dryer or kiln) 1.10 Material handling equipments(Air lift, belt or shaker, Bucket or flight conveyor, screw conveyor, roller conveyor, feeder and hopper, rotary feeder) 1.11 Size reducing equipments(Ball mill, Grinder, Roller crusher, screener) 1.12 Process Equipment(Mixer, Settlers, autoclave, Kettle jacketed, rotary film dryer or floker, Jet mixer) 1.13 Separator (centrifuge, cyclone, electrical precipitator, drum settler, open settling tank, rectary and the set or set of the set or set of the set or set of the set of	
		floating roof tank, pressure storage tank, cone bottom bin, open top-closed top bulk	
		storage)	
Unit – II	2a Identify the symbols	2.1 Flow sheet code letter service (letter A to	
Flow Sheet	20 Draw the symbols	letter V) 2.2 Symbol for Lines (Main process line	
anu Line Symbols	2c Label the symbols 2d Define letter	2.2 Symbol for Lines (Main process line, secondary process line, instrument air signal	
Symbols	identification	line, electrical leads, instrument capillary	

	Major Practical	Topics and Sub-topics		
	Learning Outcomes			
T	('Course Outcomes' in			
Unit	Cognitive Domain			
	according to NBA			
	terminology)			
		tubing, Battery limits, Existing lines, Vehicle		
		or hand truck route, package unit by vendor,		
		screwed cap, weld cap, blind flange,		
		insulated line, nose connection, flexible nose		
		connection, Removable pipe spool, steam		
		trace line, steam jacketed line)		
		2.3 Utility symbols(duct, swage, spectacle blind,		
		hammer blind, expansion joint, open drain to		
		sewer, damper, utility rack, safety shower 'S'		
		and eye wash E', sample funnel, drain to		
		sewer, steam trap – intermittent, steam trap-		
		Continuous		
		2.4 Drainer, strainer, inter, inter, twin basket		
		aductor injector and exhauster Horn Air		
		closer steep separator bootlag seal lags		
		Hose real gage batch man hole flame		
		arrester, diffuser, car sealed open car sealed		
		close locked open locked close steam		
		exhaust head winter type drain		
		2.5 Process and utility flow sheet for		
		drives(centrifugal nump-electrical drive		
		centrifugal pump turbine drive, reciprocating		
		pump steam drive, reciprocating pump-		
		electric drive. rotary pump electric drive.		
		rotary pump turbine drive, tandem pumps,		
		compressor $-$ single type engine drive,		
		blower electric type, electric turbine drive		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Unit – III	3a Identify the	3.1 Instrument identification or tag number (6		
Instrument	symbols	letter code)		
Symbol	³ 3b Draw the symbols	3.2 Identification of letter (A to Z)		
and	3c Label the symbols	3.3 Instrument line symbols(Instrument supply,		
Identificati	3d Define letter	undefined signal, Pneumatic signal, electric		
on	identification	signal, hydraulic signal, capillary tube, guided		
		– unguided EM or SONIC signal, internal		
		system link, mechanical link, pneumatic and		
		electric binary signal)		
		3.4 Symbols of function designations for relays		
		3.5 Symbols for primary location, field mounted,		
		auxiliary location for discrete instruments,		
		snared display and control, computer function		
		and PLU		
		3.6 Symbols for self actuated regulators, valves		

	Major Practical	Topics and Sub-topics
Unit	('Course Outcomes' in Cognitive Domain according to NBA terminology)	
		and other devices for: Flow, Level, Pressure, Temperature, Traps, Multiple way valves, Primary element symbols (A to Z), Function symbols (A to Z)
Unit – IV Logic Function , PLC and Distributed Control Display Symbols	 4a Identify the symbols 4b Draw the symbols as per ISA, NEMA standard 4c Label the symbols 4d Define letter identification 	 4.1 Logical function symbols Gates (AND, OR, NOT, NOR, NAND,EX-OR, EX-NOR, transmission gate, Gate isolated, Gate non isolated) Transmission and Switching symbols(Flipflop, single shot flip flop, level /schmett trigger flip flop, Amplifier, switching amplifier, signal converter) Timer (Signal time delay, adjustable time delay, Time delay ON, Time delay OFF, time delay energizing, time delay de energizing) 4.2 Switching symbols for PLC Push buttons (single circuit normally ON, single circuit normally OFF, double circuit, Double circuit with mushroom head) Foot switch (Normally open/OFF, Normally close/ON) Limit switch (Normally open/OFF, Normally close/ON) Process parameter switch(liquid level Normally open/OFF, Vacuum-pressure Normally open/OFF, Vacuum-pressure Normally close/ON, Temperature switch Normally open/OFF, Temperature switch Normally close/ON, Air-Water-gas etc. Flow Normally close/ON) Output device(coil, motor, lamp, solenoid, extensional contensional con
		 4.3 Distributed control / shared display symbols(As per ISA) Normally accessible to operator Not Normally accessible to operator Auxiliary operator's interface device 4.4 Distributed control Computer symbols Normally accessible to operator Normally accessible to operator

	Major Practical Learning Outcomes	Topics and Sub-topics
Unit	('Course Outcomes' in Cognitive Domain according to NBA terminology)	
		 4.5 Distributed control logic/sequential Control symbols Normally accessible to operator Not normally accessible to operator 4.6 Miscellaneous symbols Computing/signal conditioning software system link
Unit – V Piping and Fluid Power Symbols	 5a Identify the symbols 5b Draw the symbols flanged, screwed, welded, soldered 5c Label the symbols 5d Define letter identification 	 5.1 Piping symbols for Bushing, Cap, reducing cross, straight size cross, Cross over, 45° Elbow, 90° Elbow, long radius double branch, reducing double branch, Connecting pipe joint, Expansion pipe joint, Lateral, reducing flange, bull plug, pipe plug, sleeve, reducing tee, straight size tee, output up tee, output down tee, union, 5.2 Flow Obstruction symbols(orifice flange, Check angle valve, Gate (elevation) angle valve, Gate(plan) angle Valve, By-pass automatic valve, Governor operated automatic valve, reducing automatic valve, cock, float valve, diaphragm valve, motor operated gate valve, hose valve, safety valve 5.3 Fluid power symbols Line technique(Main line conductor, Pilot line, Exhaust/drain_line, anglesure, output
6		 line, Estimated and fine, checkstate outline, line crossing at 90° line joining) ii. Flow direction of pneumatic, hydraulic iii. Rotating coupling, vented reservoir, pressurized reservoir, reservoir with connecting line for above fluid level, reservoir with connecting line for below fluid level, vented manifold, Accumulator, Spring loaded accumulator Gas charged accumulator, Air/Gas receiver, fluid conditioners iv. Heater, Cooler, Temperature controller, filter-strainer, manual drain separator, automatic drain separator, manual drain filter-separator, chemical dryer, lubricator with less drain, Lubricator with manual drain v. Hydraulic and pneumatic Cylinders (single acting, single end rod double acting, double

Unit	Major Practical Learning Outcomes ('Course Outcomes' in Cognitive Domain according to NBA terminology)		Topics and Sub-topics
			end rod double acting, fixed/adjustable/ non
			cushion double acting)
		vi.	Pressure insentifier, servo positioner,
			discreate positioner
		vii.	Actuator and control:
		a.	Contact type(Spring , Manual operated push
			button, lever, Pedal, mechanical, detent,
			pressure compensated)
		b.	Electrical / hydraulic, pneumatic Motors and
			pumps(Uni-bi directional)
		c.	Instruments(pressure /temperature / flow
		L	indicator-recorder)
		a.	Sensing(venturi, orifice plate, pitot tube,
		0	Nolve (two way ON OFF Valve, two way
		e.	valve (two way ON-OFF valve, two way
			pilot-operated to close check valve, two way
			position normally open two way valves, two
			position normally close two way valves
			infinite position normally open two way
		\mathbf{y}	valves, infinite position normally close two
			way valves, two position normally open three
			way valves, two position normally close three
	07		way valves, two position normal four way
			valves, two position actuated four way valves,
			three position normal four way valves, three
			position right actuated four way valves, three
			position left actuated four way valves
		f.	Pressure control valves(pressure relief valve,
			sequence valve, pressure reducing
			valvepressure reducing and relieving valve,
(~)			air line pressure regulator
		g.	Flow control valves (adjustable, Adjustable
			with bypass, Adjustable and pressure
			compensated with bypass, temperature and
			pressure compensated adjustable)

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Not Applicable

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit	Practical/Exercise	Apprx.
	No.	('Course Outcomes' in Psychomotor Domain according	Hrs.
		to NBA terminology)	Required
1	Ι	Sketch the process line symbols	2
2	Ι	Sketch the different valve symbols	2
3	Ι	Sketch the different heat transfer equipment symbols	2
4	Ι	Sketch the different process equipment symbols	2
5	II	Sketch the different flow sheet code letter service	2
6	II	Sketch the different Symbol for Lines	2
7	II	Sketch the different Utility symbols	2
8	II	Sketch the different process and utility flow sheet for drives	2
		symbols	
9	III	Sketch the different instrument identification or tag number (6	1
		letter code) schemes	
10	III	Sketch the different identification of letter (A to Z)	2
11	III	Sketch the different instrument line symbols 2	
12	III	Sketch the different symbols of function designations for relays 2	
13		Sketch the different symbols for primary location, field 2	
	III	mounted, auxiliary location for discrete instruments	
14	III	Sketch the different symbols for self actuated regulators, valves	2
	A Y	and other devices for flow, level, pressure, temperature	
15	III	Sketch the different symbols for self actuated regulators, valves 2	
		and other devices for traps, multiple way valves	
16	III	Sketch the different symbols for self actuated regulators, valves 4	
		and other devices for primary element symbols(A to Z)	
17	III	Sketch the different symbols for self actuated regulators, valves 4	
		and other devices for function symbols(A to Z)	
18	IV	Sketch the different Logical function symbols for different gates, 2	
		transmission - switching, timers	
19	IV	Sketch the different push buttons, foot, limit switches	1
20	IV	Sketch the different process parameter switches used for PLC 2	
21	IV	Sketch the different graphical symbols used for distributed	
		control system	2
22	V	Sketch the different graphical symbols for piping and joints	2

9'

S. No.	Unit	Practical/Exercise	Apprx.
	No.	('Course Outcomes' in Psychomotor Domain according	Hrs.
		to NBA terminology)	Required
23	V	Sketch the different graphical symbols for flow obstruction	2
24	V	Sketch the different graphical symbols for fluid power	1
		transmission and storage	
25	V	Sketch the different graphical symbols for hydraulic and	
		pneumatic cylinders	
26	V	Sketch the different graphical symbols for different electric,	
		hydraulic and pneumatic motor and pumps	
27	V	Sketch the different graphical symbols for sensing elements and	
		2,3,4 way valves	
28	V	Sketch the different graphical symbols for pressure and flow	
		control valves	
		Total	56

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Study P & I diagram of given chemical process.
- ii. Study P & I diagram of given textile process.
- iii. Study P & I diagram of given automobile manufacturing.
- iv. Prepare chart for different categories of symbols.
- v. Study colour code for different zone/electric/piping fluid.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Demonstration using Power Point Presentation
- ii. CBT based self learning session
- iii. Display of Industrial Drawings for Interpretation
- iv. Visit to Industry and correlating drawing with the actual systems
- v. Practical exercises both manually and on computer using different drawing software.
- vi. Mini project

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S.	Title of Books	Author	Publication
No.			
1	Applied Instrumentation in the	W.G. Andrew/	Gulf publishing co. Kuwait
	process industries vol.3	H.B.Williams	2012
2	DOE Fundamental handbook	Department of energy	Department of energy USA
	engineering symbology, prints and		2012
	drawing		
3	Instrumentation and control system	Frederick A. Meier and	ISA USA year 2004 awarded
	documentation	Clifford A. Meier	best selling ISA book
4	Process control principles and	Bhanot Surekha	Oxford University Press year
	applications		2011

, co

B) List of Major Equipment/Materials with Broad Specifications

- i. High end computers (22 No) with enhanced graphic card & 20 inch Display
- ii. Media Projector -3000 lumens
- iii. Electrical CAD software
- iv. AutoCAD software
- v. Chemsketch software
- vi. Three colour plotter
- vii. Instrumentation component stencil
- viii. Drawing tools.

C) List of Software/Learning Websites

- i. www.isa.org
- ii. www.nema.org
- iii. www.ieee.org
- iv. www.ourinstrumentationgroup.com
- v. www.chemsketch.en.malavida.com

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Mr. R. R. Manchiganti, Head of IC Engineering Department, GPGandhianagar
- Mr. A. K. Bilakhia, Lecturer, IC Engineering Department, GP Gandhinagar
- Mr. M. B. Vanara, Lecturer, IC Engineering Department, GP Gandhinagar
- Mrs. M. M. Shah, Lecturer IC Engineering Department, GP Palanpur

Faculty Members from NITTTR Bhopal

- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering.
- Dr. Shashikant Gupta, Professor and Coordinator for State of Gujarat. .