GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ELECTRONIC AND PNEUMATIC INSTRUMENTATION (COURSE CODE:3351701)

Diploma Programmers in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	5 th semester

1. RATIONALE

In spite of the massive transition of the process control industry from the pneumatic to an electronic and digital age ,the study of pneumatic instrumentation is significantly essential since pneumatics are still widely used in the control valves of the control loops. Through this course the students will acquire sound theoretical and practical knowledge of the various pneumatic and electronic instruments widely deployed in the process industries.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that students are able to acquire following competency.

• Operate and Maintain electronic and pneumatic instruments.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes..

- i. Classify and identify the instrument according to signal type.
- ii. State standard signal units and ranges and perform signal conversion.
- iii. Select and operate pneumatic and electronic instrument
- iv. List application of electronics and pneumatic instrument
- v. Differentiate pneumatic vs. electronic instrumentation and control systems.

Teaching Scheme			Total	Total Exami			ination Scheme		
	(Hours) Credits Theory Marks Practical Man (L+T+P)		l Marks	Total Marks					
L	Т	Р	С	ESE	PA	ESE	PA	200	
3	0	4	7	70	30	40	60	200	

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE CONTENT DETAILS

One Major Learning Outcomes Topics and Sub-topics	
(Outcomes in cognitive domain)	
Unit – I 1a Classify and list electronic 1.1 Classification of electron	nic
Fundamentals instrument based on instruments as under	
of laboratory/testing/ Field • Laboratory- / Testin	ıg
Measurement instruments. instruments.	
1b Describe working principle,• Field instruments.	
construction of electric 1.2 Electrical meters/Instrum	nents
meters/instruments with neat 1.2.1 PMMC type	
schematic diagram (1.2.1 to 1.2.2 Rectifier type	
1.2.4). [71.2.3 Moving Iron ty	/pe
1c Enlist applications of electric 1.2.4 Electro dynam	ic type
meters/instruments (1.2.1 to	•1
1.2.4) 1.3.1 Standard signal g	enerator
1d Draw block diagram of basic (S.S.G.).	
instruments and explain operation 1.3.2 Ramp type DVM	
in detail.(1.3.1 to 1.3.5) 1.3.3 CRO	
1eEnlist application of listed test1.3.4Digital storage	
instruments (1.3.1 to 1.3.5) oscilloscope(DSC	D)
1f Enlist additional features of DSO1.3.5Electronic calibra	ator
with reference to CRO. 1.4 Classification of measure	ing
1g Classify and list types ofBridge	
Measurement Bridge. 1.4.1 DC bridges (for r	resistance
1h State Uses of bridges inmeasurement)	
Instrumentation • Wheatston	e Bridge
Ii Explain the circuit diagram of•Kelvin Bri	dge
Wheatstone bridge and derive the 1.4.2 AC bridges(for	
expression for unknown inductance/capac	itance
resistance. measurement)	
• Maxwell's	Bridge
• Anderson'	s bridge
IK Enlist applications of wheatstone Desauty's'	s bridge
11 Describe working principle and 1.5 Isolation and its techniq	ues
1.6 Need for standardization	of
neat diagram(1 4 2) signals-Current, voltage,	and
1m Discuss importance of isolation pneumatic signal standar	ds
1n Describe isolation technique in	
detail	

	10 State need for standardization of
	signals.
	Ip State standard unit and range for
	pneumatic signal used in
	instrumentation.
	1q State standard unit and range for
	electronic signal used in
	instrumentation.
UNIT II	2aEnlist components of a self-2.1Self-balancing instruments
Pneumatic	balancing instruments. 2.2 Flapper Nozzle Mechanism (For
Instrumentatio	2b Explain self-balancing principle Revision)
n	of pneumatic instruments with 2.3 Pilot Relay Bleed & Non Bleed
	neat schematic diagram. type
	2cExplain the construction and2.4Pressure Regulator.
	working of flapper nozzle system 2.5 Different types of balancing
	with neat diagram. Principles
	2d State the needs of Pilot relay. 2.5.1 Moment balance
	2e Explain construction and working 2.5.2 Motion balance
	of Pilot relay with schematic 2.5.3 Force balance
	diagram. 2.6 Pneumatic Controllers
	2f Describe construction and 2.6.1 On-Off Controller
	working of pressure regulator 2.6.2 P Controller
	with neat sketch. 2.6.3 I Controller
	2gExplain different types of2.6.4P+I Controller
	balancing principle with 2.6.5 P+D Controller
	schematic diagram. 2.6.6 P+I+D Controller
	2h Explain construction and
	operation of various pneumatic
	controller with the help of neat
	sketch. (2.6.1 to 2.6.6).
UNIT-III	3a Compare electronic and pneumatic 3.1 Electronic Instruments versus
Electronic	instruments. Pneumatic instruments
Instrumentatio	3bDescribe function of electronics3.2Electronics instruments
n	instruments. (3.2.1 To 3.2.5) in 3.2.1 Instrumentation amplifier.
	brief. 3.2.2 Integrator.
	3cState uses of listed electronics3.2.3Differentiator.
	instruments (3.2.1 to 3.2.3) 3.3 Electronics controllers
	3d Draw general block diagram of3.6.1On-Off Controller
	different types of electronic 3.6.2 P Controller
	controller and explain each block 3.6.3 I Controller
	in detail. 3.6.4 P+I Controller
	3e Explain operation of various types3.6.5P+D Controller
	of electronic controller with the 3.6.6 P+I+D Controller
	help of op amp circuit diagram
	(3.6.1 to 3.6.6). 3.4 Controller tuning and alignment.
	3f Define Proportional Band and 3.4.1 Tuning Methods:

	Offset Error.	Process Reaction Curve
	3g Draw output response of P, I, D,	(open loop)
	P+I, $P+D$, $P+I+D$ for step, pulse,	• Ziegler Nichols (closed
	ramp and sinusoid input.	loop)
	3h State mathematical expression for	
	P, I, D, P+I, P+D, P+I+D control	
	action.	
	3i List out steps to be followed for	
	controller tuning and alignment.	
	3j Explain in brief tuning methods	
	for controller.	
UNIT-IV	4.a Describe need of transmitter.	4.1 Need of transmitter (concept of
Pneumatic and	(Concept of field area & control	field area & control room area)
Electronic	room area).	4.2 Types of transmitters
transmitters	4.b State types of transmitter.	Pneumatic Transmitter
	4.c With the help of neat diagram,	• Electronic Transmitters
	describe construction and	4.3 Pneumatic Transmitter
	working of force balance type	4.3.1 Force Balance Transmitter
	pneumatic transmitter.	4.3.2 Motion Balance Transmitter
	4.d With the help of neat diagram,	4.4 Electronic Transmitters
	describe construction and	4.4.1 Force Balance Transmitter
	working of motion balance type	4.4.2 Motion Balance Transmitter
	pneumatic transmitter.	4.4.3 Intelligent and SMART
	4.e Describe construction and	Transmitter
	working of force balance type	
	electronic transmitter with the	
	help of neat diagram.	
	4.f Describe construction and	
	working of Motion balance type	
	electronic transmitter with the	
	help of neat diagram.	
	4.g State the features of intelligent	
	transmitter.	
•	4.h Draw and explain basic block	
	diagram of smart transmitter.	
	4.i Compare conventional transmitter	
	with smart transmitter.	
UNIT-V	5.a Explain the operation of current	5.1 Current Transformer.
Signal	transformer with the schematic	
Converters and	diagram.	5.2 Potential Transformer.
instrument	5.b Explain the operation of potential	
transformer	transformer with schematic	5.3 Converters
	diagram.	5.3.1 Electrical converter
	5.c Describe the characteristics of	Resistance to Current Converter
	current transformer and potential	Resistance to Voltage Converter
	transformer.	Voltage to Current Converter

5.d Enlist types of converter.	• mV to Current Converter for
5.e Describe the construction and	thermocouples
working of converters (5.3.1).	• AC to DC Converter for mA
5.f Explain the working of Pneumatic	5.3.2 Pneumatic to Electronic (P/I)
to Electronic (P/I) converter with	converter.
the schematic diagram.	5.3.3 Electronic to Pneumatic (I/P)
5.g Explain the working of Electronic	converter.
to pneumatic (I/P) converter with	
the schematic of diagram.	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS(THEORY) **7.**

UNIT	TITLE	TEACHING	DISTRI	BUTION O	F THEORY	MARKS
NO.		HOURS	R	U	A	TOTAL
			LEVEL	LEVEL	LEVEL	MARKS
Ι	Fundamentals of	10	02	08	04	14
	Measurement			C I		
II	Pneumatic	08	02	06	06	14
	Instrumentation					
III	Electronic	08	02	06	06	14
	Instrumentation					
IV	Pneumatic and	08	02	06	06	14
	Electronic					
	transmitters	. 0	F			
V	Signal Converters and	08	02	06	06	14
	instrument					
	transformer	6				
TOTA	L	42	10	32	28	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as

given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

SR	TINITT	PRACTICAL EXERCISE	APPROXIMATE	
NO.	UNII	(outcomes in psychomotordomain)	HRS REQUIRED	
1.	Ι	Measure controller output current using PMMC type	2	
		instrument.		
2.	Ι	Obtain wave form of S.S.G.	2	
3.	Ι	Measure single phase ac voltage using DVM.	2	
4.	Ι	Measure ac load current using DVM.	2	
5.	Ι	Measure dc output voltage of thermocouple using	2	
		DVM.		
6.	Ι	Measure supply frequency using CRO.	2	
7.	Ι	Measure output voltage using CRO.	2	
8.	Ι	Compare two supply frequencies and phase using	2	
		CRO.		
9.	Ι	Compare amplitudes of two signals using CRO.	2	
10.	Ι	Develop lissajous figures on CRO.	2	
11.	Ι	Check function and features of DSO	2	
12.	Ι	Find resistance of a RTD using Wheatstone bridge.	2	
13.	Ι	Find resistance of a RTD using Kelvin double	2	
		bridge.		
14.	Ι	Find Inductance of a given inductor using Maxwell	2	
		bridge.		
15.	Ι	Find Inductance of a given inductor using Anderson	2	
		bridge.		
16.	Ι	Find capacitance of a given capacitor using	2	
		Desauty's's bridge.		
17.	II	Test flapper nozzle mechanism.	2	
18.	II	Plot input-output characteristics of flapper nozzle	2	
		system.		
19.		Test output response of pilot relay.	2	
20.	II	Set 20 psig Instrument air supply system using	2	
		pressure regulator.		
21.	П	Control pneumatic control valve using pneumatic P	2	
		controller.		
22.	II	Control pneumatic control valve using pneumatic P+I	2	
		controller.		
23.	II	Control pneumatic control valve using pneumatic	2	
		P+D controller.		
24.	II	Control pneumatic control valve using pneumatic	2	
		P+I+D controller.		

25.	III	Develop a circuit of an electronic integrator using op- amp.	2
26.	III	Develop a circuit of an electronic differentiator using op-amp.	2
27.	III	Build and test Instrumentation amplifier circuit using op-amp.	2
28.	III	Build circuit for instrumentation amplifier to convert for given input and output value.	2
29.	III	Build and test electronic on-off controller using operational amplifier for step input.	2
30.	III	Develop electronic P controller using operational amplifier for step input.	2
31.	III	Develop electronic I controller using operational amplifier for step input.	2
32.	III	Develop electronic P+I controller using operational amplifier for step input	2
33.	III	Develop electronic P+D controller using operational amplifier for step input	2
34.	III	Develop electronic P+I+D controller using op amp for step input.	2
35.	III	Tune given electronic controller for optimum output for step input.	2
36.	IV	Install and check functions of pneumatic transmitter	2
37.	IV	Install and check functions of electronic transmitter.	2
38.	IV	Install and check functions of SMART transmitter.	2
39.	V	Develop signal conditioning circuit to convert resistance to current.	2
40.	V	Develop signal conditioning circuit to convert resistance to voltage.	2
41.	V	Develop signal conditioning circuit to convert voltage to current.	2
42.	V	Develop signal conditioning circuit to convert thermocouple output mV into current.	2
43.	V	Plot characteristics of Pneumatic to Electronic converter.	2
44.	V	Observe the output response of Electronic to	2
		Pneumatic converter for a given input and plot its	
	7	characteristics.	
TOTA	L Hrs. (pr	actical for 56 hours from above representing each unit	88
	. T	may be selected)	

8. SUGGESTED LIST OF STUDENT ACTIVITIES:

- i. Present a seminar on listed technical topics in EPI syllabus.
- ii. Set up electronic apparatus on their own during practical hour under the guidance of lecturer as mini project.

- iii. Debate on merits and demerits of pneumatic and electronic instruments.
- iv. Prepare a poster on any one topic related of course.
- v. Collect the extracurricular information related with the course from internet and share it with other students.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Display animation videos of controller response to different types of Standard inputs.
- ii. Visit to nearby industry to observe realtime electronic and pneumatic loops.
- iii. Facilitate the students to set up practical apparatus on their own.
- iv. Compliment student for his/her work done during the practical in order to motivate him/her.
- v. Regularly check the practical file maintained by student and instruct him/her remedies to improve the work if required.

10. SUGGESTED LEARNING RESOURCES

A.) LIST OF BOOKS

Sr No.	BOOK	AUTHOR	PUBLICATION	
1	Instrument Engineers Handbook	Bela G Liptak	ISA	
2	Applied Instrumentation in the process	W G Andrews	ISA	
	industries	H B Williams		
3	Process Control Instrumentation	Curtis D Johnson	PHI	
	Technology			
4	A Course in Electrical and Electronic	A K Sawhney	DHANPATRAI	
	Measurements and Instrumentation			
5	Electronic Instrumentation Techniques	W D Cooper	PHI	
6	Instrumentation Training Course	D B Taraporewala	D.B. Taraporevala Sons	
7	Industrial Instrumentation and Control	S K Singh	TATA MCGRAW HILL	
8	Process Instrumentation and Control	A P Kulkarni	Nirali Prakashan	
9	Electronics measurement and	K. Lal Kishore	Pearson	
	instrumentation			
10	Process dynamics and control	Surekha bhanot	PHI	

B.) LIST OF MAJOR EQUIPMENTS/INSTRUMENTS:

- i. Electronic Controller Trainer Kit(on-off, P, I, D, P+I, P+D, P+I+D)
- ii. Function generator(step, pulse, ramp, sine)
- iii. CRO.
- iv. DSO.
- v. DVM
- vi. SMART transmitter.
- vii. mA / mV source.
- viii. Electronic DP transmitter.

ets.d

- ix. Electronic temperature transmitter.
- x. I to P converter
- xi. P to I converter
- xii. Pneumatic controller trainer Kit(on-off,P, P+I, P+D, P+I+D)
- xiii. Compressor (cut off : 7 kg/cm2)(cut in:3.5 kg/cm2)
- xiv. Pressure regulator (to maintain 20 psig)
- xv. Quarter inch copper pipe (minimum 20 meter per semester)
- xvi. Copper pipe bender and cutter
- xvii. Teflon tape for sealing
- xviii. Multi process control loop using pneumatic control.
 - xix. Multi process control loop using electronic control.
 - xx. Pneumatic & Electronic Calibrator

C.) LIST OF SOFTWARES/LEARNING WEBSITES

- i. Multisim Software
- ii. Ktechlab Software
- iii. Logisim Software
- iv. Jcircuits Software
- v. Circuitmaker Software
- vi. Coolspice Software
- vii. Psimsoftware
- viii. Simone Software
- ix. Partsim Software
- x. Docircuits Software
- xi. www.nptel.ac.in
- xii. logiccircuit software
- xiii. http://www.deltapower.com/wpcontent/uploads/2013/12/pump.pdf
- xiv. http://www.faa.gov/regulations_policies/handbooks_manual
- /aircraft/amt_airframe_handbook/media/ama_ch12.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>FACULTY MEMBERS FROM POLYTECHNICS</u>

- **Prof. H. P. Patel** Lecturer(IC), Government Polytechnic, Ahmedabad.
- **Prof. N. J. Dehlvi** Lecturer(IC), Government Polytechnic, Gandhinagar
- **Prof. Manan Modi** Lecturer(IC), Government Polytechnic, Palanpur

CO ORDINATOR AND FACULTY MEMBER FROM NITTTR BHOPAL

- Prof. Joshua Earnest. Professor, Department of Electrical and Electronics Engineering
- Prof. N.P.Patidar. Professor, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PROCESS INSTRUMENTATION-II (COURSE CODE: 3351702)

Diploma Programmers in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	5 th Semester

1. RATIONALE

In the present industrial scenario, role of the process instrumentation is becoming more important day by day. More advanced, precise and complex instrumentations are being employed in the industry. Diploma engineers should therefore be able to identify, select, troubleshoot and maintain the different process instrumentation systems. Therefore, this course has been designed so that students will learn to build and test the different types of process instrumentation system required for the parameters such as temperature, level, force, torque, vibration etc.

2. **LIST OF COMPETENCY**

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Operate and Maintain different types of process instrumentation systems.

3. COURSE OUTCOMES:

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Selects measurement method for a process parameter by process instruments for temperature level, vibration, force and torque in a process plant.
- ii. Specify instrumentation for temperature level, vibration, force and torque application.
- iii. Identify, describe and Calibrate major instruments for temperature, level, vibration, force and torque in a process plant.
- iv. Test & maintain the components of the main types instruments for temperature level, vibration, force and torque in a process plant.
 - Draw schematic diagram of process instrumentation for temperature level, vibration, force and torque in a process plant.

Teachi	ng Schen	ne	Total	Examination Scheme				
(In Hours)		Credits	Theory Marks		Practical Marks		Total	
			(L+T+P)					Marks
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	4	7	70	30	40	60	200

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

V.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(In cognitive domain)	
Unit – I	1a. Define heat, temperature.	1.1 Introduction: Heat, Temperature
Temperature	1b. List various temperature scales	1.2 Temperature scales.
Measurement	and relate them.	-
Techniques	1c. Enlist types of expansion	1.3 Expansion thermometer
	thermometer.	1.3.1 Solid Expansion Thermometer
	1d. Enlist application, merits and	•Bimetallic thermometer
	demerits of expansion	Spiral Bimetal element
	thermometer.	Helix Bimetal element
	1e. Explain construction and	1.3.2 Liquid Expansion Thermometer-
	working of following filled	Mercury in Glass type.
	system thermometers: (1) Class	
	I (2) Class II (3) Class III (4)	1.4 Filled system thermometer
	Class V.	1.4.1 Class I-Liquid Filled Systems
	If. Enlist applications, merits and	1.4.2 Class II- Vapour Systems
	thermometers	1.4.3 Class III- Gas Filled Systems
	1 digt courses of error in filled	1.4.4 Class V- Mercury Filled Systems
	Ig. List sources of error in fined	1.5 Thompson las
	1h Explain head effect radiation	1.5 1 Principle: Sooback Poltier
	effect immersion effect and din	Thomson
	effect	effect
	1. Describe Seebeck effect. Peltier	1.5.2. Thermoelectric laws
	effect and Thomson effect.	1.5.3 Cold junction compensation
	1j. State and explain thermoelectric	1.5.4 Thermowell
	laws.	1.5.5 Thermocouple extension wires
	1k. Describe protection,	1.5.6 Thermocouples selection criteria
	installation and importance of	
	thermowell in thermometry	
	11. State positive and negative	1.6 Resistance Temperature Detector
	extension wires used in	Industrial RTD
	following type of	1.6.1 2-wire RTD
	thermocouples: B, E, J, K, R, S,	1.6.2 3-wire RTD
	and I	1.6.3 4-wire RTD
	Tim Explain cold junction	
	thermocouple	1.7 Thermistors
	In Enlist methods used for	1.8 Integrated Circuit (IC) based
	forming thermocouples ends.	Temperature sensors
	10. Define thermopile.	I I I I I I I I I I I I I I I I I I I
	1p. State the criteria for selection	
	of thermocouple.	1.9 Non-contact type thermometry
	1q.Classify various thermocouples	1.9.1 Radiation pyrometer
	as per ANSI standard	1.9.2 Optical pyrometer
	1r. Describe the output of	1.9.3 Optical Fibre Thermometry
	thermocouple (mV) converted	1.9.4 Ultrasonic thermometry
	to corresponding temperature	1.9.5 Laser thermometry
	value using thermocouple	
	calibration table.	1.10 Temperature switches and
	is. Describe construction of	tnermostats

Unit	Major Learning Outcomes	Topics and Sub-topics
	(In cognitive domain)	
	Industrial RTD.	
	1t. Explain resistance measuring	
	circuit of RTD.(2-wire, 3-wire,	
	4-wire bridge circuit)	
	1u. State the need of lead wire	
	compensation in RTD.	
	1v.Describe temperature measuring	
	bridge circuit using thermistor.	
	1w. Describe performance of a	
	thermistor. (Resistance-	
	temperature graph).	
	1x. Compare output response of	
	RTD, Thermistor and	
	Thermocouple with sketch.	
	1y. Explain Integrated Circuit (IC)	
	based temperature sensors.	
	Iz.Define emissivity, Black body	
	concept, Stefan Boltzmann	
	Law.	
	Taa. Explain construction and	
	thermometry (1.0.1 to 1.0.5)	
	the state marite and demorite of	
	non-contact type thermometer	
	1cc List sources of error in Non-	
	contact type thermometry	
	1dd Describe operation of	
	Temperature switches and	
	thermostats.	
Unit – II	2a State units, importance of level	2.1Level measurement: Importance and
Level	measurement in process	Units.
Measurement	Industries	2.2 Level measurement methods:
Techniques 📩	2b Classify methods of level	2.2.1Direct methods
	measurement.	•Bob and Tape method
	2c Describe working and	•Sight glass method
()	construction of level	2.2.2Indirect methods
	measurement method (2.2 to	•Pressure gauge type
	2.7).	•Air bellows.
	2d Enlist Applications for various	2.3Capacitance type level measurement
	level measuring methods (2.2 to	and Radiation type level measurement
	2.7)	2.4Differential pressure type level
	2e State merits and demerit of	measurement
	various level measuring	2.5 Ultrasonic level detector.
	methods(2.2 to 2.7)	2.6 Laser Level Sensors
	21 Describe working and	2.7 Optical Level detector
	construction of various levels	2.8 Level switches:
	switches (2.8)	2.8.1 Float type level switch
		2.8.2 Displacer level switch
		2.8.3 conductivity level switch

Unit		Major Learning Outcomes	Topics and Sub-topics		
		(In cognitive domain)			
Unit – III	3a	Define transmitter.	3.1Electronic temperature transmitters		
Temperature	3b	Explain electronic temperature	3.2 Level transmitter		
and level		transmitter with neat schematic	3.2.1Differential pressure type level		
Transmitters		diagram.	transmitter		
	3c	List Differential pressure type	•Pneumatic type		
		level transmitters.	•Electronic type		
	3d	Explain working and	3.2.2 Extended diaphragm level		
		construction of pressure type	transmitter		
		level transmitter with neat			
		sketch (3.2.1-3.2.2).			
	3e	Enlist applications of			
		transmitters.			
	3f	Describe concept of Zero			
		suppression and Elevation for			
		level transmitter.			
Unit IV	4a	Define Force and Torque	4.1Force		
Force And	4b	State units of Force and Torque	4.1.1Elastic force meters.		
Torque	4c	Explain working and	4.1.2Load cells		
Measurement		construction of listed force	4.2 1 Orque		
Techniques	4 1	transducers.	4.2.1 Strain gauge torsion meter		
	4d	Explain working and	4.2.2 Electrical torsion meter		
		construction of listed torque	4.2.3 Mechanical torsion meter.		
TI	5	Define with retire	5.1 Vibration		
Unit – V Vibration	Ja 5h	Explain working and	5.1 Vibration Songore:		
Vibration 56 Explain Working		explain working and	5.2 vibration Sensors:		
Techniques (5.2)		(5.2)	5.2.2 Piezo electric sensor		
rechniques	50	(J.2) Enlist applications of vibration	5.2.2 Fiezo-electric sensor		
	50	sensors (5.2)			
	5d	Enlist merits and demerits of			
		vibration sensors (5.2)			

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit 🥖	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Temperature Measurement	14	1	12	5	21
	Techniques	14	4	12	5	21
II	Level Measurement Techniques	14	4	12	5	21
III	Temperature and level	08	0	10	1	14
	Transmitters	08	0	10	4	14
IV	Force And Torque Measurement	04	2	6	2	10
	Techniques	04	2	0	2	10
V	Vibration Measurement	02	0	2	2	04
	Techniques	02	U	2	2	04
	Total	42	10	42	18	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr.	Unit	Practical Exercises	Hrs.			
No.	No.	(Outcomes' in Psychomotor Domain)	required			
1	Ι	Use liquid in glass type filled system thermometers	02			
2	Ι	Perform temperature measurement using expansion	02			
3	Ι	Measure temperature of given medium using given 02 thermocouple with the help of corresponding thermocouple table (Conversion of millivelt to temperature)				
4	I	Verify the law of intermediate metal for available type of thermocouple.	02			
5	I	Test the effect of reference junction temperature on given 02 thermocouple.				
6)	Convert output of thermocouple (mV) into temperature(°C)02using corresponding thermocouple calibration table02				
7	Ι	Measure the temperature using RTD and Test. 02				
8	Ι	Calculate temperature co-efficient of resistance using RTD 02				
9	Ι	Measure the temperature using Thermistors and Plot the 02 characteristic curve.				
10	Ι	Measure the temperature using IC temperature sensor.	02			
11	Ι	Measure the temperature of heating element using Optical Pyrometer.	Measure the temperature of heating element using Optical 02 Pyrometer. 02			
12	Ι	Measure the temperature of heating element using radiation Pyrometer.	02			
13	Ι	Measure the temperature using fiber Optic thermometer.	02			

Sr.	Unit	Practical Exercises	Hrs.	
No.	No.	(Outcomes' in Psychomotor Domain)	required	
14	Ι	Measure the temperature using thermometer	02	
15	Ι	Measure the temperature using thermometer	02	
16	Ι	Test the operation of temperature switch at given temp	02	
17	II	Measure the level of the tank with the help of the Sight glass	02	
18	П	Measure the level of the tank with the help of the pressure	02	
10	11	gauge.		
19	II	Measure level with the capacitance type transducer.	02	
20	II	Test for the float type level switch	02	
21	II	Use displacer level switch for given range & Test	02	
22	II	Use capacitance type level switch for given range & Test	02	
23	Ш	Use Electronic Temperature transmitters for given range &	02	
23	111	Test.		
24	Ш	Use differential pressure type level transmitter for given range	02	
2-1	111	& Test.		
25	IV	Measure torsion by electrical torsion meter	02	
26	IV	Use load cell and test for perfomance	02	
27	V	Measure vibration by vibration analyser.	02	
* Note: These experiments can be either conducted using hardware from				
coverii	ng all ti	he Units . Total	54	

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Industrial Visit for students (chemical industries, petroleum industries, production industries)
- ii. Small technical projects based on theory topic.

9. SPECIAL INSTRUCTIONAL STRATEGIES

i. Videos/Animation for different devices should be shown.ii.Seminar on relevant topics.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

Sr. No.	Title of Book	Author	Publication
1.	Process Measurement and Analysis	Liptak, B. G.	I.S.A
2.	Industrial Instrumentation	Eckman, D. P.	Wiley Eastern Limited, New Delhi
3.	Industrial Instrumentation	Singh, S.K.	Tata Mc Graw Hill, New Delhi
4.	Mechanical Measurements	Kumar, D. S.	Metropolitan Book Company, New Delhi
5.	Process Instrumentation and Control	Kulkarni, A.P.	Nirali Prakashan, Pune

6	Mechanical and Industrial	Jain, R.K.	Khanna publication, New Delhi
0.	measurements		
		Krishnaswamy, K.	New Age
7.	Industrial Instrumentation	and S. Vijayachitra,	International Publication, New
			Delhi

B) List of Major Equipment/ Instrument with Broad Specifications

- i. Function generator(sine, square, triangle etc. with frequency range 10 Hz to 100 kHz)
- ii. DC power supply ($-30 \rightarrow 0 \rightarrow +30$ V with at least 1A current capacity)
- iii. Measuring equipments like CRO (preferably dual channel, 20Mhz)
- iv. Multi meter
- v. Electrical tool kit.
- vi. Circuit/Trainer board/ Demonstration modules of Thermocouples , RTDs, Thermistors, IC temperature sensor.
- vii. Temperature Switches, Optical Pyrometer, Radiation Pyrometer
- viii. Sight Glass type Level Indicator
- ix. Pressure Gauge type Level Indicator
- x. Float type, Displacer type and Capacitance type Level Switches
- xi. Fiber Optic Thermometer, Ultrasonic Thermometer, Laser Thermometer
- xii. Capacitance type Level Transducer
- xiii. Electronic Temperature transmitters
- xiv.Differential pressure type Level Transmitter
- xv. Universal Calibrator
- xvi. Air Compressor
- xvii.Load Cell
- xviii.Vibration Analyzer
- xix. Electrical Torsion Meter
- xx. metal detector
- xxi. ultrasonic flaw detector

C) List of Software/Learning Websites

- i. http://www.pc-education.mcmaster.ca/Instrumentation/temperature.
- ii. http://www.pc-education.mcmaster.ca/Instrumentation/level.
- iii. http://www.dugantech.com/Product_Group-Temperature/Technical%20Articles/TE Criteria%20for%20Selection%20of%20RTD%20or%20TC%20industrial%20apps.pdf
- iv. books.google.co.in/books?isbn=8122416691
- v. Capacitive Displacement/Vibration Measurement Sensor Products
- vi. Eddy-Current Displacement/Vibration Measurement Sensor Products

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- Prof. R. J. Dhruv Sr. Lecturer , A.V.P.T.I. Rajkot
- Prof. S. Z. Shyara Sr. Lecturer, A.V.P.T.I. Rajkot
- **Prof. R. P. Raiyani** H.O.D I.C Christ Polytechnic Institute, Rajkot.
- Prof. H. P. Patel Lecturer, Government Polytechnic, Ahmedabad.

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. (Dr) Joshua Earnest.** Professor, Department of Electrical and Electronics Engineering
- rice contraction of the second Prof. (Dr) N. P. Patidar. Professor, Department of Electrical and Electronics Engineering

GTU/ NITTTR Bhopal/14-15

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ANALYTICAL INSTRUMENTATION (COURSE CODE: 3351703)

Diploma Programmers in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	5 th Semester

1. RATIONALE

The use of Analytical instruments is increasing day by day in industries. Now a day's advanced, complex and precision analytical instruments are being used in most of the process industries. Diploma Instrumentation engineer are therefore also supposed to know about analytical instrumentation fundamentals, It is important as the students may get employment in the process plant, where they will have to operate, maintain and calibrate different analytical instruments. Hence this course has been designed to develop some of the basic skills in operation and maintenance of various analytical instruments.

2. **LIST OF COMPETENCY**

The course content should be taught and implemented with the aim to develop required skills so that students are able to acquire following competency:

• operate and maintain various analytical instruments.

3. COURSE OUTCOMES:

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Observe and obtain the accurate reading of analytical instruments.
- ii. Specify analytical instrumentation for different types of analysis.
- iii. Identify and describe major analytical instruments.
- iv. Describe the purpose and function of analytical instrumentation
- v. Identify the main installed and laboratory analytical instruments.
- vi. Identify sub components of the main analytical instruments
- vii. Draw schematic diagram of analytical instrumentation
- viii. Test and calibrate different analytical instruments

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Examination Scheme					
(In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks Practical Marks		ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Outcomes in Cognitive Domain)	
Unit – I	1a Define analytical instrumentation.	1.1 Introduction
Fundamental	1b Explain importance of composition	1.2 Elements of an analytical
s of	analysis in process industries.	instruments
Analytical	1c Draw and explain elements of an 🥖	1.3 Applications of chemical
Instruments	analytical instrument.	composition measurement in
	1d List Application of composition	industries
	analysis.	1.4 Classifications of analytical
	1e Classify analytical instruments	instruments based on properties
	based on properties that are utilized	
	in the analysis.	
Unit – II	2a Define the following terms:	2.1 Viscosity measurement
Analysis	Viscosity, Fluidity, Kinematic	techniques.
using	Viscosity, Specific viscosity,	2.1.1 Terminologies
Mechanical	Relative Viscosity and Viscosity	2.1.2 Saybolt viscometer
and Thermal	Index.	2.2 Density and Specific Gravity
properties	2b State the units of viscosity.	2.2.1 Pressure head type
	2c State the methods of viscosity	densitometer
	measurement techniques.	2.2.2 Displacer type densitometer
	2d Explain principle, construction and	2.2.3 Float type densitometer
	working of Saybolt 's viscometer.	2.2.4 Buovancy effect type
	2e Define density and specific gravity.	densitometer
	2f State the unit of density and specific	2.3 Thermal conductivity analysis.
	gravity	2.3.1 Principle
	2g Enlist types of density	2.3.2 Dual hot wire thermal
	measurement techniques.	conductivity cell.
	2h Describe working principle,	
	construction with schematic	
	diagram of Density and Specific	
	Gravity measurement techniques .	
	- pressure head type densitometer	
	- displacer type densitometer	
	- float type densitometer	
	- buoyancy effect type densitometer	
	 2h Describe working principle, construction with schematic diagram of Density and Specific Gravity measurement techniques . pressure head type densitometer displacer type densitometer float type densitometer buoyancy effect type densitometer 	

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Outcomes in Cognitive Domain)	
	2i State principle of thermal	
	conductivity for gas analysis.	
	2j Draw and explain the dual hot wire	
	thermal conductivity cell.	
	2k List and explain different	
	techniques of filling gas to thermal	
	conductivity cell.	
Unit – III	3a Define the following terms	3.1Electrical Conductivity analyze
Analysis using	conductivity, conductance, cell	3.1.1 Introduction and
Electrical	constant.	applications.
properties	3b Draw and explain null method of	3.1.2 Methods of measurement of
FF	conductance measurement.	conductance :
	3c Draw and explain direct reading	• null method
	method of conductance	 direct reading method
	measurement	2 1 2 Conductivity coll
	3d Explain working principle of	5.1.5 Conductivity cen
	conductivity cell	- remperature compensation in
	3e Explain Temperature compensation	conductivity measurement
	in conductivity measurement	3.2 pH analyzer
	3f Define pH Dissociation constant	3.2.1 Principle of pH
	Kw pH range Buffer solution	measurement.
	Slope factor	3.2.2 Electrodes for pH
	Stope factor.	measurement.
	massurement with next diagram	3.2.3 Electronics circuit for pH
	2h Draw relationship between pH and	measurement.
	Sh Draw relationship between pH and	3.2.4 Calibration
	2: Describe mesonring electro de (class	3.3 O2 Analyzer
	51 Describe measuring electrode (glass	3.3.1 Paramagnetic O2 analyzer
	schematic diagram	•dumb-bell type
	2. Describe reference electrode	• wind type
	5) Describe reference electrode (Colornal & A α (A α Cl, algorithm da)	3.3.2Heat of reaction analyzer
	(Calomel & Ag/AgCl ₂ electrode)	3.3.3Dissolved O2 analyzer.
	for pH measurement with schematic	3.4Polarography
	diagram.	-electrodes DME (Dropping
	3k Describe combination electrode for	Mercury Electrode), SCE (
	pH measurement with schematic	Saturated Calomel Electrode)
()	diagram.	
	31 List and explain failures in ph	
	meter.	
	3m List calibration & maintenance	
	steps for pH meter	
	3n Explain electronics circuit for pH	
	meter.	
	30 List techniques of O_2 analyzer.	
	3p Explain principle, working and	
	construction of dumb-bell type	
	paramagnetic O_2 analyzer.	
	3q Explain with schematic diagram the	
	principle, working and construction	
	of	
	-wind type paramagnetic O ₂	

Unit	Major Learning Outcomes	Topics and Sub-topics				
	(Outcomes in Cognitive Domain)					
	analyzer					
	-dissolved O2 analyzer.					
	3r List types of Polarography.					
	3s Explain basic polarographic set up.					
	3t Explain with schematic diagram the					
	construction, working principle of					
	electrodes DME, SCE					
Unit – IV	4a Define electromagnetic radiation,	4.1 Electromagnetic radiation				
Analysis	Absorption spectroscopy.	4.1.1 Electromagnetic spectrum				
using radiant	4b Draw electromagnetic spectrum.	4.1.2 Interaction of radiation				
properties	4c Explain interaction of radiation	with matter.				
	with matter.	4.2 Laws relating to Absorption of				
	4d State Lambert's law	radiation.				
	4e State Beer's law	4.2.1 Lambert's law				
	4f State Beer- Lambert's law	4.2.2 Beer's law				
	4g Draw and explain working	4.2.3 Beer- Lambert's law				
	principle with schematic diagram	4.3 Absorption instruments				
	in brief various components of	4.3.1Colorimeters (photometer 4.3.2Spectrophotometer 4.3.3X-ray technique of analys				
	absorption instruments					
	4h Draw and explain basic					
	components of a filter colorimeter.	by absorption.				
	4i Explain working principle with	4.3.4 X-ray technique of analysis				
	schematic diagram the single	by diffraction.				
	beam optical null type	4.4 Nuclear Magnetic				
	spectrophotometer.	Resonance(NMR)				
	4 Explain principle construction and	4 4 1Principle				
	working of X-ray absorption	4.4.2Block diagram.				
	scheme.	C				
	4k Enlist the application of X-ray					
	absorption spectrometer.					
	41 Explain principle, construction and	nd				
	working of X-ray diffraction					
	scheme.					
	4m Explain principle of NMR.					
	4n Explain block diagram of					
	NMR spectrometer.					
Unit – V	5a Define Gas chromatography.	5.1 Gas chromatography				
Analysis	5b List basic parts of Gas	5.1.1 Basic parts				
using	chromatograph.	5.1.2 detectors				
miscellaneou	5cDraw and explain block diagram of	•thermal conductivity detector				
s properties	a Gas chromatograph.	•flame ionization detector(FID) •flame photo detector(FPD) •Flectron Capture Detector (
	5d List detectors used in Gas					
	chromatograph.					
	5e Explain working principle with	•Electron Capture Delector (
	schematic diagram detectors for	ECD)				
	Gas chromatograph	5.2 Keiracioineter				
	- thermal conductivity	5.2.1 I neory of operation				
	- flame ionization detector	5.2.2Classity Retractometer				
	- flame photo detector	•Differential type				
	- Electron Capture Detector	➤ single pass refractometer				
	5t List applications of Gas	➤two pass refractometer				

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Outcomes in Cognitive Domain)	
	chromatograph.	•critical angle refractometer
	5g Explain theory of operation of	
	refractometer.	
	5h Define refractive index, snell's	
	law, critical angle.	
	5i Classify refractometer.	
	5j Describe single pass refractometer	
	with neat sketch.	
	5k Describe two pass refractometer	
	with neat sketch.	
	51 Describe critical angle	
	refractometer with schematic	
	diagram.	
	5m State the limitation of	
	refractometer.	
	5n List applications of refractometer.	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks					
No.		Hours	R	U	Α	Total		
			Level	Level	Level	Marks		
Ι	Fundamentals of Analytical		2	Λ	0	06		
	Instruments	- 4	Z	4	0	VO		
II	Analysis using Mechanical and	6	2	C	4	10		
	Thermal properties	0	Z	0	4	12		
III	Analysis using Electrical properties	12	4	12	4	20		
IV	Analysis using radiant properties	12	4	12	4	20		
V	Analysis using miscellaneous	09	1	6	2	10		
	properties	08	4	0	Z	14		
	Total	42	16	40	14	70		

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S No	Unit	Practical Exercises	Hrs.
5. INO.	No.	(Outcomes' in Psychomotor Domain)	required
1	Π	Measure viscosity of given solution using viscometer.	02
2	II	Plot effect of temperature on viscosity of given solution by	02
2		Saybolt viscometer.	
2	Π	Measure density of given solution using Pressure head	02
5		type densitometer.	
4	Π	Measure density of given solution using displacer type	02
		densitometer.	•
5	II	Measure density of given solution using float type	02
5		densitometer.	
6	II	Measure density of given solution using buoyancy effect	02
0		type densitometer.	
7	III	Measure conductivity of given solution using analog	02
/		multimeter.	
Q	III	Measure conductivity of given solution using digital	02
0		conductivity meter.	
9	III	Plot effect of temperature on conductivity of given	02
,		aqueous solution	
10	III	Test and calibrate pH meter.	02
11	III	Measure pH of given solution using double electrode	02
		method.	
12	III	Measure pH of given solution using combination	02
		electrode method.	
13	111	Plot the effect of temperature on pH of given aqueous	02
1.4	ш		02
14		Test and calibrate dumb-bell type O_2 analyzer.	02
15		Test and calibrate wind type O2 analyzer.	02
16		Measure O_2 concentration in given gas mixture.	02
17		Prepare electrode and measure dissolved O_2 concentration	02
10	Ш	In given sample.	02
18		Water analysis using water analyzer	02
19	IV	verify Beer-Lamoert's law using Trainer Kit.	02
20	IV	Analyze given sample using colorimeter.	02
21	IV	Test and calibrate spectrophotometer.	02
22	IV	Measure % transmission, absorption and concentration of	02
	X 7	given sample using spectrophotometer.	02
23	V	Study of each part of gas chromatograph	02
24	V	Analyze given gas mixture using gas chromatograph.	02
25	V	Measure retractive index using refactometer.	02
26	V	Analyze given sample using refactometer.	02
TOTAL	(practica	l for 28 hours from above representing each unit may be	52
selected))		

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Prepare presentation on relevant topics.
- ii. Prepare chart/model on relevant topic.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Visit to Industries/ Process and CSMRI type laboratories/ industries
- ii. Video films/animation films on working of different types of analytical
- instruments.
- iii. Mini project

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1	Hand book of Analytical	R.S. Khandpur	Tata McGraw Hill, New
1.	Instruments		Delhi
n	Analytical Instrumentation	Bela G. Lipkat	Chilton book company
۷.			
3	Principle of industrial	D. Patranabis	Tata McGraw Hill, New
5.	instrumentation		Delhi
4	Process instrumentation and	A.P. Kulkarni	Nirali Prakashan, pune
4.	control 🔣		
5	Instrumental methods of	H.H. Willard	CBS Publishers &
5.	analysis 💦 💦		Distributers

B) List of Major Equipment/ Instrument with Broad Specifications

i.Saybolt viscometer

ii.Pressure head densitometer.

iii.Displacer type densitometer.

iv.Buoyancy effect type densitometer.

v.Float type densitometer.

vi.Conductivity meter.

vii.Double Electrode pH meter.

viii.Combination Electrode pH meter.

ix.Dumbbell type O2 analyzer

x.Wind type O2 analyzer

xi.Dissolved O2 analyzer.

xii.Trainer kit for Beer-Lambert's law

xiii.Ploarograph – with DME, SCE cells & Required Hg quantity

xiv.Gas Chromatograph

xv.Colorimeter

xvi.Laboratory Refractometer

xvii.Water analyzer

xviii.Spectrophotometer

C) List of Software/Learning Websites

Gas chromatography:

- i. http://www.sigmaaldrich.com/analytical-chromatography
- ii.http://www.slideshare.net/banuman35/applications-of-gas-chromatography
 - applications-of-gc-by-pravisankar

Rfractrometer :

- iii.<u>http://www.intercomir.it/laboratorio/rifrappl_en.html</u>
- iv.http://www.misco.com/refractometer-support/refractometer-forum/refractometer-

applications Spectrophotometer:

302

v.http://www.slideshare.net/suniu/spectrophotometry-16091660

pH meter

vi.<u>http://www.wikihow.com/Calibrate-and-Use-a-pH-Meter</u>

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>Faculty Members from Polytechnics</u>

Prof. R.P. Merchant, HOD(IC) Govt. Polytechnic, Gandhinagar.
Prof. J. T. Patankar Sr. lecturer IC Engineering, Govt. Polytechnic, Ahmedabad

• Prof. A.K. Bula Sr. lecturer IC Engineering, Govt. Polytechnic, Gandhinagar.

Coordinator and Faculty Members from NITTTR Bhopal

- •Prof. Joshua Earnest. Professor, Department of Electrical and Electronics Engineering
- •Prof. N.P.Patidar. Professor, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PLC PROGRAMMING (COURSE CODE: 3351704)

Diploma Programmers in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	5 th semester

1. RATIONALE

Different logical process automation is used for optimum controlling of the process parameters and hence Diploma Engineers should be able to maintain these instrumentation systems. This requires that they should know very well about logical control action fundamentals. Hence this curriculum has been designed so that the students will be able to develop, program and troubleshoot applications of various PLC based logical control strategies for automation.

2. **LIST OF COMPETENCY**

The course content should be taught and implemented with the aim to develop required skills so that students are able to acquire following competency:

• Maintain different types of PLC based process instrumentation systems.

3. COURSE OUTCOMES:

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify logical process control in automation
- ii. Connect the PLC peripherals with the PLC for logical functioning.
- iii. **Develop** advance PLC programs.
- iv. Able to develop PLC based automation system.
- v. Troubleshoot PLC.

4. TEACHING AND EXAMINATION SCHEME

Tea	ching Scl	heme	Total	Examination Scheme						
((In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks		Prac Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	РА			
3	0	2	5	70	30	20	30	150		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	_
Unit – I	1a Explain block diagram for	PLC system
Basic PLC system	PLC based automation	1.1. Over view of PLC system
-	system with sketch.	1.2. PLC module
	1b Draw block diagram various	1.2.1.Intelligent module
	PI C modules and explain	1.2.2.PID module
	them in hrief	1.2.3.Communication module
	1. State steps to install PI C	1.3.PLC Installation
	1d Describe DI C networking	1.4.PLC networking
	(master slave mode) with	
	(Illaster Slave moue) with	
TT 24 TT	SKEICH.	2.1 DLC Descistors and I/O
	2a Describe the function of five	2.1.PLC Registers and I/O
Basic PLC	in DI C	addressing.
Iuncuon	The Describe use of PLC registers	2.1.1.Kegister and mp-nop
	in PLC operation	Characteristic.
	2 Develop ladder logic for flip	2.1.2.1 ypes of register(Holding,
	flops (R-S. ONE SHOT, D. T.	Input, Output register)
	and J-K) in PLC.	2.1.5. Wodule addressing
	2d Describe module addressing	2.2. PLC timer function
	for PLC.	2.2.1.1 ypes and instructions of
	2e Describe PLC retentive and	timer
	delay timer functions	On Delay, OII Delay,
	2f State types and instructions of	Ketentive "Non Ketentive
	timing functions used in PLC.	Ulmer
	2g Draw ladder diagram and wiring	2.3.PLC counter function
	diagram for each timer	2.3.1.1 ypes and instructions of
	functions for PLC.	
	2h State types and instructions of	UP, DU WIN, UP/DU WIN
	PLC counter functions.	counter
	21 Draw ladder diagram for each	
	counter functions for PLC.	
	2] Develop ladder logic for ON-	
	timer, counter and limit	
	switches	
Unit III	2a Dasariba arithmatia	Arithmetic and logical function
Arithmatic and	Sa Describe antimetic,	used in DI C
logical function	DLC functions	2 1 DI C arithmatic function :
logical function	2h Use DI C exitematic	Addition Subtraction
	So Use PLC antimetic	Multiplication Division Square
	functions to Add, subtract,	root Nagativa Average
	multiply and divide	3.2 PLC comparison function
	numbers.	Basic comparison functions
	3c Derive square root by using	Equal Not equal Greater than
	PLC square root functions.	Less than Greater than equal to
	3d Describe each PLC	Less than equal to
	Advanced comparison	3.3 Advanced comparison functions
	functions.	I IMIT TEST MASKED
	3e Describe each PLC logical	COMPARE COMPARE
	functions.	EXPRESSION(CMP)
	3f Describe operation of the	LAI KESSION(CIVII)

Unit		Major Learning Outcomes	Topics and Sub-topics
Cint		(in cognitive domain)	Topies and Sub topies
		SKID MASTED	3.4 PLC logical function
		CONTROL PELAV IIIMD	3 5 SKIP MASTER CONTROL
		MOVE FIED EAL ONE	RELAV IIIMP with non return
		SHOT (ONS) CLD	IUMP with return
		SHOT (ONS), CLK,	3 6 Data transfer function MOVE
	2 ~	Sweep functions.	BLOCK MOVE TABLE AND
	зg	Describe the FLC digital bit	REGISTER MOVE
	21	Control functions.	3.7.FIFO. FAL. ONE SHOT. CLR
	511	CLEAD & DITFOLLOW	and SWEEP functions
		CLEAR & BIT FOLLOW	3.8.PLC Digital bit function
		functions showing bit	3.8.1 Bit patterns in registers
	o:	pattern in the registers.	3.8.2 Changing register bit status
	51	Use smill register to move	3.8.3 Shift register functions
	<u>.</u>	digital bits within registers.	
	3J	Use shift register to move	
T T •/ T T7	4	digital bits through registers.	410
Unit - IV	4a	Describe PLC sequencer.	4.1.Sequencer function
Advanced PLC	4b	Describe Sequencer output,	4.1.1. Sequencer output, input
functions		input and load functions.	and load instruction.
	4c	Develop ladder logic	4.2. PLC analog operation
		program using Sequencer	4.2.1.analog signal processing
		output, input and load	4.2.2. BCD or multibit data
		functions.	processing
	4d	Differentiate between	4.3. PID function for continuous
		discrete and analog	process
		operation of PLC.	4.3.1.PID tuning (open loop
	4e	Convert input signals	transient system,
		suitable to input module of	ultimate cycle,
	4.0	PLC.	frequency response)
	41	Convert output module	4.3.2.PID function
		signal to suitable values for	4.4. PLC Auxiliary functions
		output devices of PLC.	4.4.1. Monitor mode function
	4g	Describe the internal PLC	4.4.2. Force mode function
		operation for analog I/O	
	41	systems.	
	4n	List the different types of	
	4.	PID Tuning methods.	
	41	Discuss PID PLC function.	
	4 <u>j</u>	Describe PLC auxiliary	
T T •4 T 7	~	Tunctions.	
Unit - V	за	Draw neat sketches of PLC	5.1. PLC process Applications :
PLC Application		process applications for the	5.1.1.bottle filling plant
		given parameters of	5.1.2.material handling
I roubleshooting	~1	processes(5.1.1 to 5.1.4)	elevator
	30	devices used for NG	5.1.5. 2-axis robot with
		devices used for PLC process	PLC sequencer control
		applications and assign	5.1.4. Process level control
		proper addresses to each of	5.2.110ublesnooting
		noremotors of processes	
	50	Propara socialization of events	

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
	 for PLC process applications for the given parameters of processes 5d Develop Ladder Logic diagram for PLC process applications for the given parameters of processes 5e State the trouble shooting procedure for PLC system. 	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R 🧹	U	Α	Total
			Level	Level	Level	Marks
Ι	Basic PLC system	04	2	4	1	07
II	Basic PLC function	10	4	8	2	14
III	Arithmetic and logical function	12	7	7	7	21
IV	Advanced PLC functions	10	4	8	2	14
V	PLC Application and Troubleshooting	06	0	4	10	14
	Total	42	17	31	22	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Hrs. required
1	Ι	Install hardware and software components of Given PLC system. Check it's working by running a sample program	02
2	Ι	Identify intelligent, PID, Input, Output, Communication module	02

3	Ι	Wire Inputs, Outputs via PLC input output modules		
4	Ι	Wire intelligent, PID, Communication module with PLC	02	
5	Ι	Connect master PLC with two slave PLCs	02	
6	Ι	Study networking of PLC by means of simulation or appropriate video.	02	
7	II	Develop ladder logic to realize D flipflop	02	
8	II	Develop ladder logic to realize RS flipflop	02	
9	II	Develop ladder logic to realize JK flipflop	02	
10	Π	Develop ladder logic to realize T flipflop		
11	II	Simulate Industrial application of PLC On Delay Timer.	02	
12	II	Verify On Delay timer operation using actual PLC	02	
13	II	Simulate Industrial application of PLC Off Delay Timer.	02	
14	Π	Verify Off Delay timer operation usin actual PLC	02	
15	Π	Simulate Industrial application of PLC Retentive Timer.	02	
16	II	Verify Retentive timer operation using PLC	02	
17	II	Simulate Industrial application of PLC UP COUNTER.	02	
18	II	Verify UP COUNTER operation using actual PLC	02	
19	II	Simulate Industrial application of PLC UP/DOWN COUNTER.	02	
20	II	Verify UP/DOWN COUNTER operation using actual PLC	02	
21	II	Simulate Industrial application of PLC ADDITION Function.	02	
22	III	Verify ADDITION Function using actual PLC	02	
23	III	Simulate Industrial application of PLC SUBTRACTION	02	
24	TTT	Function.	02	
24	III VERIFY SUBTRACTION Function using actual PLC		02	
25	5 III Simulate Industrial application of PLC EQUAL TO Comparison Function.		02	
26	III	Verify EQUAL TO Comparison Function using actual PLC	02	
27 III		Simulate Industrial application of PLC LESS THAN and	02	
		GREATER THAN Comparison Functions.		
28 III		Verify LESS THAN and GREATER THAN Comparison		
		Functions using actual PLC		
29	III	Functions.	04	
30	ш	Verify the operation of Advance Comparison Functions using	04	
50		actual PLC		
31	Ш	Simulate Industrial application of PLC SKIP and MCR	02	
		Functions. Verify the same functions using actual PLC		
32	III	Simulate Industrial application of PLC JUMP Functions. Verify	02	
		the same functions using actual PLC	0.0	
33	III	Simulate Industrial application of PLC Data Transfer Functions. Verify the same functions using actual PLC	02	
34	Ш	Simulate Industrial application of PLC Data Transfer Functions.	04	
51		Verify the same functions using actual PLC		
35	III Simulate Industrial application of PLC SHIFT REGISTER Functions. Verify the same functions using actual PLC.		02	
36	W	Simulate Industrial/Domestic application of PLC SEQUENCER	04	
30	1 V	Function. Verify the same function using actual PLC.		
		Control the level in a given level control loop using PID function	04	
37	IV	of PLC. Obtain the response curves of PV, SP and Controller		
		O/P. Tune the loop properly to obtain close control.		
38	IV	Control the temperature in a given temperature control loop using PID function of PLC. Obtain the response curves of PV, SP and	04	

		Controller O/P. Tune the loop properly to obtain close control.			
39	IV	Control the Pressure in a given pressure control loop using PID function of PLC. Obtain the response curves of PV, SP and Controller O/P. Tune the loop properly to obtain close control.	04		
40	IV	Control the flow in a given flow control loop using PID function of PLC. Obtain the response curves of PV, SP and Controller O/P. Tune the loop properly to obtain close control.	04		
41	v	Simulate Bottle filing process on PLC simulator. Verify operation of the same process using actual PLC. Draw connection details for the same process	04		
42VSimulate material handling elevator operation on PLC simulator. Verify operation of the same process operation using actual PLC. Draw connection details for the same process.					
Total Hours (practical for 28 hours from above representing each unit may be					
selected)	selected)				

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

i. Assemble PLC power supply PLC, Input / Output and other module on mounting rack.

- ii. Wire automatic level control system using various components.
- iii. Wire automatic temperature control system using various components.
- iv. Wire automatic flow control system using various components.
- v. Connect personal computer using star topology.
- vi. Connect personal computer using ring topology.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

I. Visits to Industries.

ii. Use free simulators for PLC programming in the class when teaching.

iii. Video films/animation films on working of different type automatic system such as bottle filling plant, material handling elevator, 2-axis robot with PLC sequencer control, Process level control, Process temperature control Troubleshooting of PLC from YouTube and other resources.

iv. Mini project based on 2 axis ROBOT, Designing of process control loop, PLC

Industrial Application which is not covered in above Experiment list

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1	Programmable logic Controllers	John w. Webb	PHI Learning,
	Principles and applications	Ronald A Reis	
2	Programmable logic Controllers	John R Hackworth	Pearson
	Programming methods and	Frederick D. Hackworth	
	applications	Jr.	
3	Process Control Principles and	Surekha Bhanot	Oxford University press
	applications		
4	Instrumentation engineer's	B.G Liptak	Chilton Book Co., Philadelphia
	handbook		
5	Process control Instrumentation	Curtis D Johnson	PHI pvt. Ltd.
	technology		

6.	Programmable Logic Control: Principles And Applications	NIIT	PHI EEE edition
7	Programmable Controllers	Thomas A. Hughes	ISA

B) List of Major Equipment/ Instrument with Broad Specifications

- i.Electrical tool kit 3sets
- ii.Multi-meter 3 No.
- iii.Master PLC with Power supply and Hand held PLC programmer (touch screen teach pendent). 1 NO
- iv.Slave PLC with Power supply and Hand held PLC programmer. 3 NO
- v.24 analog input module (8 analog input module 3NO.)
- vi.24 analog output module (8 analog input module 3NO.)
- vii.24 digital input module (8 digital input module 3 NO.)
- viii.24 digital output module (8 digital input module 3 NO.)
- ix. PID module (3 NO.)
- x.Communication module (3 NO.)
- xi.Thermocouple module (3 NO.)
- xii.3 level switch
- xiii.DP Transmitter (2 NO.)
- xiv.Capacitive level transmitter
- xv. 3NO Temperature switch
- xvi. J and K thermocouple (5 NO each)
- xvii. RTD (3 NO)
- xviii. 3 NO flow switch
 - xix.3" conveyor system operated 12V DC motor with digital shaft encoder
 - xx.12 proximity switch(Inductive,Optical, motion, light)
- xxi.12 V DC motor with digital shaft encoder
- xxii.PLC based Automatic bottle filling plant
- xxiii.Flow, temperature, level control setup for PLC based automation using Flow, temperature, level switches.

B) List of Software

To run PLC compatible software should be purchased from the PLC supplier such as WINCC/ RS logix etc.

Learning Websites

- i.www.control.com
- ii.www.plcs.net
- iii.www.pacontrol.com
- iv.En.wikipedia.org
- v.www.seimens.com
- vi.www. ab.rockwellautomation.com > <u>Allen-Bradley</u>
- vii.<u>www.abb.co.in</u>
- viii.<u>www.tri**plc**.com</u>
- ix. http://plc-training-rslogix-simulator.soft 32.com/free-download/
- x.www.youtube.com
- $xi.www.\underline{our instrumentation group.com}$
- xii.for PLC networking in master-slave :
- http://www.automationdirect.com/static/manuals/dadnet/appxa.pdf
- xiii.books.google.com

11. **COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics**

- Prof R. P. Merchant, HOD IC Engineering, Govt. Polytechnic, Gandhinagar
- Prof A. K. Bilakhia, Lecturer IC Engineering, Govt. Polytechnic, Gandhinagar
- Prof N. B. Mehta, Lecturer IC Engineering, Govt. Polytechnic, Ahmedabad
- Prof Manan Modi, Lecturer IC Engineering, Govt. Polytechnic, Palanpur

Coordinator and Faculty Members from NITTTR Bhopal

- Prof. (Mrs.) C. S. Rajeshwari, Professor, and Head, Department of Electrical and **Electronics Engineering**
- . nen of • Prof. Joshua Earnest. Professor, Department of Electrical and Electronics

GTU/ NITTTR Bhopal/14-15

Gujarat State

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MICROPROCESSOR AND MICROCONTROLLER IN INSTRUMENTATION (COURSE CODE: 3351705)

Diploma Programmes in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	5 th semester

1. RATIONALE

Microprocessors and Microcontrollers are being extensively used in the field of Instrumentation and Control Engineering. The students studying this subject are required to have a thorough knowledge of architecture of a typical Microprocessor and Microcontroller and also acquire fundamental programming skills in the assembly language. Students further need to be aware of various Microprocessors and Microcontrollers employed in industries. The course in addition, cover general hardware aspects along with some applications and interfacing of microcontrollers in instrumentation and control discipline which would equip the student with skills for designing an embedded microcontroller based instrumentation system .

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Design, Operate and Maintain microcontroller based process instruments

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify the different block of microprocessor and microcontroller.
- ii. Use microcontrollers in instrumentation applications
- iii. Develop simple assembly language program using above instructions for given application.
- iv. Program 8051 microcontroller for various for internal organization use
- v. Interface peripheral devices with 8051 microcontroller for instrumentation applications

Teaching Scheme			Total		Examin	ation Sch	neme		
(In Hours)		Credits	Theory Marks		Theory Marks		Prac	ctical	Total
		(L+T+P)			Marks		Marks		
L	Т	Р	С	ESE	PA	ESE	PA	150	
3	0	2	05	70	30	20	30	150	

4. Teaching and Examination Scheme

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1a. Describe basic architecture of	1.1 Microprocessor Architecture
Overview	microprocessor of 8085.	1.2 8085 Microprocessor: Block
of 8085	1b. Draw and describe block diagram of	Diagram
Microproce	microprocessor 8085.	1.3 Microcontroller 8051
ssor and	1c. Describe functional block diagram of	
microcontr	8051 microcontroller with sketches	*
oller	and pin diagram	
	1d. Compare microprocessor and	
	microcontroller.	
	• • •	
Unit_ II	2a State functions of following in	2.1.8051 microcontroller
8051	microcontroller: Oscillator. Clock and	hardware
Microcontr	Reset circuit. Program counter and	2.2Programming Model:
oller	data pointer A and B CPU register	Oscillator and Reset circuit.
oner	and PSW	Program Counter Data
	2b Describe functions of internal RAM	Pointer A and B CPU
	organization	registers Flags and
	20 State applications of stack operation	nrogram status word
	and function registers	(PSW)
	2d Describe functions of internal RAM	2 3Memory organization: Internal
	and ROM organization with sketches	$\mathbf{R} \Delta \mathbf{M}$ The stack and stack
	and Kow organization with sketches.	nointer Special function
		registers Internal ROM and
		External memory
		connections
		2.4 Input/output ping, ports and
		2.4 Input/output pins, ports and
		Circuits.
Unit_III	3a State the applications of addressing	3.1 Addressing modes:
8051	modes	immediate Register Direct
Assembly	3b List the instruction set	Indirect Indexed Relative
Language	3c Explain application of Instructions	and bit addressing

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Programmi ng	with suitable example.3d Formulate simple assembly language program using above instructions for given application.	 3.2 Instructions: Moving data, Arithmetic operation, Logical operation, Jump and Call instructions 3.3 Simple programs
Unit – IV Application programmi ng of 8051	 4a State applications of TCON and TMOD register of timer. 4b List various timer modes of 8051. 4c Develop simple programs on timers which include square wave generation and delay. 4d State application of serial communication, SBUF, SCON and PCON registers, 4e Develop program for transmitting and receiving single word. 4f List interrupts of 8051 4g State the application of IP and IE registers. 	 4.1 8051 Timer/counter:TCON, TMOD, Modes of timer 4.2 Simple Programs on timer 4.3 Serial Communication of 8051: Basics, SBUF register, SCON and PCON registers, Modes of operation 4.4 Simple program of serial communication 4.5 8051 Interrupts: Interrupt priority and interrupt vector, IP and IE register
Unit – V Microcontr oller Application s in Instrument ation	 5a. Describe Applications of 8051 microcontroller in Instrumentation Room Temperature Indicator, Level detection, car parking -(Motion and obstacle sensing), frequency counter, RPM meter SMART instruments 5b.Explain interfacing of 8051 for the instrumentation listed: relay, DC Motor, stepper motor and temperature sensor LM35/LM 34, Analog Output devices for Damper and Hopper Control 5c. State the steps to maintain the above instrumentation applications and interfaced devices 5dDraw interfacing diagram of 8051 with devices listed: LED, LCD, ON/OFF switch, Hex keyboard, A/D converter with ADC 0804 and D/A converter 0808. 	 5.1 Application s in Instrumentation - Room Temperature Indicator, Level detection application, car parking - (Motion and obstacle sensing), frequency counter RPM meter, SMART Instruments ,DC Motor, stepper motor, relay, Analog Output devices for Damper and Hopper Control, Analog Multiplexer 4051 5.2Interfacing of 8051 with devices : LED, LCD, Switch: Pushbutton, DIP, ON/OFF, Thumbwheel, Tilt Hex keyboard, A/D converter with ADC 0804 and D/A converter 0808

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Overview of Microprocessor and	02	03	04	00	07
	microcontroller				2	
II	8051 Microcontroller.	10	07	10	04	21
III	8051 assembly language programming	12	03	04	07	14
IV	Application programming of 8051	10	03	04	07	14
V	Microcontroller Applications in	08	03	04	07	14
	Instrumentation.			-		
	Total	42	19	26	25	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Legends: R = Remember; U = Understand A = Apply and above levels (Bloom's Revised Taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty members should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Approx Hrs. required		
1	Ι	Demonstrate Hardware and Software development tool for 8085.			
2	Ι	Demonstrate Hardware and Software development tool for 8051.	02		
3	Ι	Study family of microprocessor and microcontroller.	02		
4	II	Develop and Execute Programs on 8 bit data transfer.	02		
5	III	Develop and Execute Programs on 16 bit data transfer instructions	02		
6	III	Develop and Execute Programs on 8 bit data transfer for a block of data from external memory.	02		

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Approx Hrs. required			
7	III	Develop and Execute Programs on 8 bit Arithmetic instructions.	02			
8	III	Develop and Execute Programs on 16 bit Arithmetic instructions.	02			
9	III	Develop and Execute Programs on Byte level Logical instructions.	02			
10	III	Develop and Execute Programs on Bit level Logical instructions.	02			
11	III	Develop and Execute Programs on Rotate and SWAP instruction.	02			
12	III	Check status of given registers after execution of given programs.	02			
13	III	Develop and Execute Programs on branching instructions.	02			
14	III	Develop and execute program for delay (without using timers).	02			
15	IV	Develop and execute program for delay using timers.	02			
16	IV	Develop and execute program for generating square wave using timers.				
17	IV	Develop and execute programs on serial transmission with different baud rates.	02			
18	IV	Develop and execute programs on interrupts handling.	02			
19	V	Interface 8051 with external memory.*	02			
20	V	Interface 8051 with LED.*	02			
21	V	Interface 8051 with Seven Segment LED.*	02			
22	V	Interface 8051 with LCD.*	02			
23	V	Interface 8051 with input switches.*	02			
24	V	Interface 8051 with Hex Key board.*	02			
25	V	Interface 8051 with ADC 0804/ADC0808/ any available.*	02			
26	V	Interface 8051 with DAC 0808/ any available.*	02			
27	V	Interface 8051 with relay.*	02			
28	V	Interface 8051 with stepper motor.*	02			
29	29 V Interface 8051 with temperature sensor / any available linear 02 29 V Interface 8051 with temperature sensor / any available linear 02					
Tota	Total (practical for 28 hours from above representing each unit may be 58					
selec	ted)					
* No	te: The	se experiments can be either conducted using hardware interfacing	modules or			
using simulated software like Labview.						

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Student should develop a small application related to micro controller as a mini project in laboratory.
- ii. Prepare evolution chart for microprocessor and microcontroller families.
- iii. Students should explore internet for keeping themselves up-to-date with latest upgraded versions and facilities related with micro controllers and make presentations in seminars.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Class Test
- ii. Assignment
- iii. Seminar/Symposium
- iv. Collection/Records
- v. Group discussion/Debate for continuous evaluation of lab activity
- vi. Mini project

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	The 8051 microcontroller	Ayala, Kenneth	Cengage learning, New Delhi
2.	Microcontroller and embedded systems	Mazidi and Mazidi	Pearson, New Delhi
3.	The 8051 microcontroller	Mackenzie, I.S.	Pearson, New Delhi
4.	Microprocessor 8085: architecture, programming and application	GAONKAR, R.S.	Peneram International Publishing (India), New Delhi
5.	8051 Microcontroller: Internals, Instructions, Programming and Interfacing	Ghoshal, Subrata	Pearson Education, New Delhi
6.	The 8051 Microcontrollers: Architecture, Programming and Applications	Rao, K. Uma Andhe Pallavi	Pearson Education, New Delhi

B) List of Major Equipment/ Instrument with Broad Specification

- i. Microprocessor trainer kit
- ii. Microcontroller 8051 Trainer kit
- iii. Computers
- iv. Microcontroller Simulators
- v. Microcontroller 8051 based interfacing study cards with components listed in Unit-5.

C) List of Software/Learning Websites

- i. ce.kashanu.ac.ir/sabaghian/download/micro/6.ppt
- ii. www.engineersgarage.com/.../8051projects/interface-lcd-at89c51-circuit
- iii. courses.cs.washington.edu/courses/cse477/.../ppt/.../MicrocontrollersII.pp.
- iv. nptel.iitk.ac.in/courses/.../IIT.../microcontrollers/.../Course_home2_13.ht...
- v. seminarprojects.com/s/microcontroller-8051-ppt-by-iit
- vi. freevideolectures.com > Electronics > IIT Kharagpur
- vii. www.youtube.com/watch?v=0SZPr4iGACg

- viii. www.vlab.co.in/ba_labs_all.php?id=1
 - ix. 59.181.142.81/Virtual Labs (Electronics), IIT Bombay.. Microcontrollers
 - x. nptel.ac.in/courses/Webcourse-contents/IIT.../Course_home2_5.htm
 - xi. cse.iitkgp.ac.in/~soumya/.../the-8051-microcontroller-0314772782.pdf
- xii. http://www.bipom.com/documents/lectures/Microcontroller%20to%20Sensor%20 Interfacing%20Techniques.pdf
- xiii. NI Lab view evaluation version

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- Prof. M. V. Dabhi Sr. Lecturer IC Engineering, Govt. Polytechnic, Gandhinagar
- Prof. A.M. Patel I/C Head, Lecturer IC Engineering, Govt. Polytechnic, Palanpur
- Prof. S. K. Raval, Lecturer IC Engineering, Govt. Polytechnic, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. (Dr) Joshua Earnest.** Professor, Department of Electrical and Electronics Engineering
- Prof. (Dr) N.P.Patidar. Professor, Department of Electrical and Electronics Engineering