GUJARAT TECHNOLOGICAL UNIVERSITY, GUJARAT

COURSE CURRICULUM COURSE TITLE: APPLIED INSTRUMENTATION (COURSE CODE: 3361701)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	Sixth

1. RATIONALE

The ultimate success of any plant control system rests on the ability of instrument experts to make proper application of components and system and on the ability of maintenance people to keep them calibrated and work safely. This course is essential in order to prepare future instrumentation personals for these tasks.

2. COMPETENCIES

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competencies:

- Operate and maintain different types of instrument air supply systems and plant interlock system.
- Select, install and maintain various instrumentation & control systems for various process industries.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i Select appropriate instruments according to process application requirement.
- ii Utilize instrument drawings during installation and commissioning of plant.
- iii Design a plant interlock circuit.
- iv Design an instrument air supply system for plant.
- v Test and maintain major control loops of cement, textile and power plant.
- vi Design, test and maintain major control loops for heat exchanger, chemical reactors and distillation columns.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total		Exam	ination S	cheme		
(Hours)			Credits (L+T+P)	Theory	Marks	Practica	l Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200
3	0	4	7	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	M	ajor Learning Outcomes	Topics and Sub-topics			
	(in	n cognitive domain)				
Unit – I	1a	Describe factors affecting for	1.1 Factors affecting for			
Selection,		selection of pressure instruments.	selection of :			
Installation	1b	Describe factors affecting for	1.1.1 Pressure			
and		selection of flow instruments.	Instruments			
Commissioning	1c	Describe factors affecting for	1.1.2 Flow Instruments			
of Instruments.		selection of level instruments.	1.1.3 Level Instruments			
	1d	Describe factors affecting for	1.1.4 Temperature			
		selection of temperature	Instruments			
		instruments.	1.1.5 Control Valve			
	1e	Describe factors affecting for				
		selection of Control Valves.	.0			
	1f	Justify the need for instrumentation	1.2 Instrumentation related			
		related documents listed in topic	documents :			
		1.2.	Process flow sheets,			
			Mechanical flow sheets,			
			Instrument index sheet,			
			Loop wiring diagram, Panel			
			drawings and			
			specifications, Plot plans,			
		<u> </u>	Installation details			
	lg	State the checklist of good	1.3 Checklist of good			
	11	installation practices.	installation practices			
	Ih	Describe typical checkout	1.4 Typical Check out			
	1.	procedure for flow transmitter.	procedure for:			
	11	Describe typical checkout	- Flow transmitter			
		procedure for temperature	- Temperature transmitter			
	1:	transmuter.	- Control valve			
	IJ	presedure for control valve				
Tin:4 II	20	Describe sizing criterie and	2.1 Sizing oritoria and processor			
Unit-11	Za	pressure level for designing of air	2.1 Sizing chiefia and pressure			
Supply System		supply system	2.2 Supply System for low air			
Supply System	2h	Draw and explain Air supply	requirement			
	20	system for low air requirement	2.3 Supply System for large air			
	2c	Draw and explain Air supply	requirement			
		system for large air requirement.	requirement			
	24	Explain construction and working	2.4 Compressor systems			
	12u	of any one type of positive	2.1 Compressor systems 2.4.1 Positive displacement			
		displacement type compressor	tvne			
	2e	Describe Compressor controls	2.4.2 Compressor controls			

	2f	Justify the need for dryers.(State	2.5 Dryers
		necessity of drver)	2.5.1 Types of dryers-
	2g	Classify dryers. Explain desiccant	Refrigeration and
	-0	drvers in detail	Desiccant(Heated and
	2h	Explain operation of heated type of	Heatless)
	211	desiccant drivers	2.5.2 Necessity of drivers
	2i	Explain operation of heatless type	2.5.2 Recessity of dryers
	21	of desiccant drivers	
		of desiceant dryers	
Unit-III	3a	Describe automatic stop motion	3.1 Textile industry
Industrial	Ju	control in textile industry	3.1.1 Automatic stop
Control	3h	Describe Humidity and moisture	motion control
Schemes and	50	control in textile industry	3.1.2 Humidity and
Plant	30	Describe Stretch control in textile	moisture control
Interlocks	50	industry	3 1 3 Stretch control
menoeks	34	Explain kiln temperature control	3.2 Compart Industry Kiln
	Su	explain kin temperature control	5.2 Cement moustry - Kim
			temperature control
	3e	Explain single element Drum level	3.3 Thermal power plant
		control in thermal power plant.	3.3.1 Drum level
	3f	Explain two element Drum level	control-
		controls in thermal power plant.	single
	3g	Explain three element Drum level	element, two
		controls in thermal power plant.	element and
			three element.
	3h	Justify the need for plant	3.4 Need for plant interlocks
		interlocks.	3.5 Simple plant interlock
	3i	Describe the working of any one	circuit
		plant interlock circuit with neat	
		diagram.	
Unit-IV	4a	State and explain heat exchanger	4.1 Heat Exchanger variables
Heat		variables and draw its symbol	and symbol
Exchanger &	4h	Explain conventional heat	4.2 Conventional Heat
Chemical	1	exchanger control scheme.	Exchanger Control Scheme
Reactors 	4c	Explain Temperature – Pressure	4.3 Temperature-Pressure
		cascade loop of heat exchanger	cascade loop in heat
	4d	Explain Temperature – Flow	exchanger.
	l'u	cascade loop of steam reboiler	4.4 Temperature-flow cascade
		cuscule loop of steam recomer.	loop of steam reboilers
	1		Toop of steam recomers.

	1.	N 1 N 11 M		
	4e	Draw and Explain Temperature	4.5	Temperature control in a
		control scheme for chemical		chemical reactor.
		reactor.	4.6	Cascade loop for
	4f	Explain cascade loop scheme for		temperature control in a
		temperature control in chemical		reactor.
		reactor.	4.7	Split range control of
	4g	Explain Split range control of		multiple coolants in a
	U	multiple coolants in chemical		reactor.
		reactor.	4.8	Reactor pressure control by
	4h	Explain Reactor pressure control		vent throttling
		by throttling flow of vent gas.		C
Unit-V	5a	List out variables for distillation	5.1	Variables for distillation
Distillation		column.		column operation.
Column	5b	Explain pressure control of	5.2	Distillation column pressure
Schemes		Distillation column by throttling		control by throttling
		condenser water.		condenser water.
	5c	Explain temperature control of	5.3	Distillation column
		Distillation column by heat control	- 4	temperature control by heat
		to reboiler.		control to reboiler.
	5d	Explain temperature control of	5.4	Distillation column
		Distillation column by reflux flow		temperature control by
		control.		reflux flow control.
	5e	Explain Feed flow control scheme	5.5	Feed flow control scheme of
		of Distillation column.		Distillation column.
	5f	Explain Cascade control of feed to	5.6	Cascade control of feed to
		second column.		second column.
<u>L</u>				

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS(Theory)

Unit	Unit Title	Teaching	Distri	ribution Of Theory Marks			
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Selection, Installation and	12	2	5	11	18	
	Commissioning of Instruments.						
II	Instrument Air Supply System	7	2	4	6	12	
III	Industrial Control Schemes and	8	2	4	8	14	
	Plant Interlocks						
IV	Heat Exchanger & Chemical	8	2	4	8	14	
	Reactors						
V	Distillation Column Schemes	7	2	4	6	12	
TOTAI		42	10	21	39	70	

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit	Practical Exercise (Outcomes in psychomotor domain)	Approx. Hours Required
1	Ι	Select appropriate pressure instrument.	2
2	Ι	Select appropriate flow instrument.	2
3	Ι	Select appropriate level instrument.	2
4	Ι	Select appropriate temperature instrument.	2
5	Ι	Select appropriate type of control valve.	2
6	Ι	Use the checklist of installation of a new instrument taking care of all safety precautions.	2
7	Ι	Check out a given flow transmitter prior to commissioning.	2
8	Ι	Check out temperature transmitter.	2
9	Ι	Check out control valve.	2
10	II	Select proper pressure level and size of compressor for instrument air supply system.	2
11	III	Simulate automatic stop motion control process of textile industry in a simulator.	4
12	Ш	Simulate Humidity and moisture control of textile industry in a simulator.	4
13	III	Simulate Stretch control of textile industry in a simulator.	4
14		Simulate kiln temperature control of cement industry in a simulator.	4
15	III	Simulate single element drum level control system in a simulator.	4
16	III	Simulate two element drum level control system in a simulator.	4
17	III	Simulate three element drum level control system in a simulator.	4
18	III	Program interlocks circuit in plc simulator.	4
19	IV	Simulate Conventional Heat Exchanger Control scheme in a control simulator.	4
20	IV	Simulate Temperature-Pressure cascade loop on steam heater in	4

S. No.	Unit	Practical Exercise (Outcomes in psychomotor domain)	Approx. Hours Required
		a control simulator.	
21	IV	Simulate Temperature-flow cascade loop on steam heater in a control simulator.	4
22	IV	Simulate Temperature control in a chemical reactor in a control simulator.	4
23	IV	Simulate Cascade loop for temperature control of reactor in a control simulator.	4
24	IV	Simulate Split range control of multiple coolants of reactor in a control simulator.	4
25	IV	Simulate Reactor pressure control by vent throttling in a control simulator.	4
26	V	Simulate Distillation column pressure control by throttling condenser water in a control simulator.	4
27	V	Simulate Distillation column temperature control by heat control to reboiler in a control simulator.	4
28	V	Simulate Distillation column temperature control by reflux flow control in a control simulator.	4
29	V	Simulate Feed flow control scheme of Distillation column in a control simulator.	4
30	V	Simulate Cascade control of feed to second column in a control simulator.	4
31	V	Simulate column pressure control scheme in a control simulator.	4
Total	Hours		104

Note: Perform any of the practical exercises from above list for total of minimum 56 hours depending upon the availability of resources so that skills matching with the most of the outcomes of every unit are included.

8. SUGGESTED LIST OF STUDENT ACTIVITIES:

- i Present a seminar on any one technical topic.
- ii Set up practical apparatus on their own during practical under the guidance of faculty.
- iii Debate on merits and demerits of current industrial control scheme.
- iv. Prepare a poster on any one topic from curriculum.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If any):

- i Display animation videos of industrial loops.
- ii Arrange visit to nearby industry to observe real-time loops.
- iii Facilitate the students to set up practical apparatus on their own.
- iv Compliment student for his/her work done during the practical in order to motivate him/her by student and Instruct him/her remedies to improve his work if required.
- v Arrange expert lectures of instrumentation engineers working in process industries.

10. SUGGESTED LEARNING RESOURCES

A.)	Books

Sr No.	Title of Book	Author	Publication
1	Instrument Engineers Handbook	Bela G Liptak	Chilton book company, Radnor, Pennsylvania,3 rd edition
2	Applied Instrumentation in the process industries	W G Andrews, H B Williams	Gulf Publishing Company.
3	Chemical Process Industries	R N Shreeve	McGraw-Hill, 3 rd edition
4	Chemical Engineering	Dryden	

B.) Major Equipment/Instruments:

- i Control Valve
- ii Compressor
- iii Multimeter
- iv Current Source
- v Voltage Source,
- vi Different types of pressure measuring instruments, Different types of flow measuring instruments, Different types of temperature measuring instruments, Different types of level measuring instruments,

5.0

- vii Chemical reactor model,
- viii distillation column model,
- ix Heat exchanger model.

C.) Software/Learning Websites

- i books.google.co.in
- ii en.wikipedia.org
- iii www.britannica.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. R J Dhruv, Sr. Lecturer (I/C HOD) in IC, AVPTI, Rajkot
- Prof. R. P. Raiyani, I/C HOD, Christ Polytechnic Institute, Rajkot
- Prof. (Smt.) S K Raval, Lecturer in IC, Government Polytechnic, Ahmedabad
- Prof. M J Dehlvi, Lecturer in IC, Government Polytechnic, Gandhinagar

Coordinator and Faculty Member from NITTTR Bhopal

- **Dr. Joshua Earnest,** Professor, Department of Electrical and Electronics Engineering
- Dr Shashi Kant Gupta, Professor and Coordinator for State of Gujarat

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INDUSTRIAL POWER CONTROL (COURSE CODE: 3361702)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	Sixth

1. RATIONALE

In the present industrial scenario, role of the industrial power control instrumentation is becoming more important day by day. More advanced, precise and complex power control circuits and techniques are being employed in industry. Diploma engineers should therefore be able to identify, classify, troubleshoot and maintain the different industrial power control instrumentation systems. Therefore, this course has been designed so that students will learn to test, build, wire and troubleshoot the different types of industrial instrumentation circuits and components required for power plants mainly for the process parameter such as speed, level, pressure, frequency, phase, temperature, flow etc.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Maintain different types of industrial power control instrumentation system.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i. Select relevant power control devices for the given industrial applications.
- ii. Troubleshoot AC and DC power control circuits employing power devices.
- iii. Troubleshoot inverter, chopper circuits.
- iv. Maintain AC and DC drives.
- v. Maintain Resistance welding equipment.

4. **TEACHING AND EXAMINATION SCHEME**

Tea	ching S	Scheme	Total Credits	Examination Scheme						
(In Hours)		urs)	(L+T+P)	Theory Marks		Theory Marks		Pra Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200		
3	0	4	7	70	30	40	60	200		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I.	1a. Describe working of SCR, MOSFET	1.1. Industrial electronics
Power	and IGBT with the help of sketches.	devices
Semiconduct	1b. Analyze the characteristic curves of	:SCR,DIAC,TRIAC,PUT,
or Devices	SCR, DIAC, TRIAC, PUT, IGBT and	MOSFET,IGBT
	MOSFET.	1.2. Triggering methods of
	1c. Explain SCR two transistor analogy	SCR
	and derive anode current equation.	1.3. Commutation
	1d. Explain the turn ON methods of	techniques of SCR.
	thyristor (SCR) (triggering methods).	1.4. Snubber circuit,
	1e. Explain the turn OFF methods of SCR	freewheeling of SCR.
	- commutation techniques of SCR.	
	If. Describe working of snubber circuit	
	101 SCR.	
	of SCR_TRIAC_MOSFET and IGBT	
	1h. Describe construction and working of	1.5. Opto electronic devices
	Opto- Isolators.	concept.
	1i. Describe construction and working of	1.6. Opto-Isolators, Opto-
	Opto-SCR.	SCR.
Unit– II	2a. Explain working of half and full	2.1. Control Converter using
Power	control bridge converter with resistive	SCR.
Converter	load.	
and Cyclo	2b. Explain working of Half and Full wave	
Converter	control bridge converter with R-L	
	Load.	
	2c. Explain the working principle of single	2.2. Cyclo-Converter using
	phase Bridge Cyclo-converter.	SCR.
	2d. Explain the working principle of single	
	phase Mid-point Cyclo-converter.	
Unit– III	3a. Explain the Principle and working of	3.1 Inverters: Series, Parallel
Inverters	Series Inverter circuit.	and Bridge inverters.
and	3b . Explain the Principle and working of	
Choppers	Parallel Inverter circuit.	
	3c . Explain the Principle and working of	
	bridge type Inverter circuit.	
	3d. Explain Basic D.C. chopper circuit.	3.2 Chopper:
	3e. Explain the working principle of step	3.2.1 Classification of
	up Chopper circuits.	chopper.
	31. Explain the working principle of step	3.2.2 Step-up.
	down Chopper circuits.	3.2.3 Step Down.

Unit	Major Learning Outcomes Topics and Sub-topics
	(in cognitive domain)
Unit IV	4a. Describe Speed control of D.C. Motor 4.1 Speed control methods for
Industrial	using armature voltage control with 4.1.1 D.C motor
Application	circuit. 4.1.2 Induction motor
of Power	4b. Describe stator voltage speed control 4.1.3 Stepper motor
Electronics	for induction motor with circuit. 4.2 Industrial Applications.
Devices	4c. Describe stepper motor drive circuit. 4.2.1 D.C. static switch.
	4d. Explain application like D.C. static 4.2.2 Alarm circuit.
	switch, alarm circuit. 4.2.3 Temperature
	4e. Explain circuit diagram for control.
	Temperature control using mercury 4.2.4 Liquid level control.
	thermostat. 4.2.5 Ambient Light
	4f. Explain conductive Liquid level control
	control circuit.
	4g. Explain Ambient Light control power
	switch.
	4h. Describe function of single phase AC 4.3 Single phase AC power
	power control circuit using DIAC-
	TRIAC with neat diagram. TRIAC.
	4i. Describe function of DC power4.4 UJT Triggered SCR
	control circuit using SCR with UJT in power control.
	triggering circuit with circuit diagram.
Unit-V	5a. Describe types of Resistance Welding. 5.1 Resistance Welding.
Resistance	5b. Explain the terms related to resistance 5.1.1 Classification: spot,
Welding	welding. butt, seam,
Control	5c. Explain duty cycle for resistance projection, flash.
	welding process. 5.1.2 Duty cycle.
	5d. Explain basic circuit for resistance 5.1.3 Resistance welding
	welding process. scheme.
	5e. Explain SCR electronic line contactor 5.1.4 Electronics Line
	circuit. contactor.
	5f. Explain heat control using UJT and 5.1.5 Heat control
	SCR. circuit.
	Sg. Explain electronics circuit for weld 5.1.6 Sequence Timer.
A	control sequences. 5.1./ Energy storage
	Solution Storage weiding. Weiding.
	51. Compare resistance and conventional 5.1.8 Comparison of
	weiding Process. Weiding methods.
6	welding Process. S.1.8 Comparison of welding methods.

Unit No.	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Power Semiconductor Devices	8	6	8	4	18
II	Power converter and Cyclo	8	2	4	8	14
	Converter					
III	Inverters and Choppers	8	2	4	4	10
IV	Industrial Application of Power Electronics Devices	10	4	10	4	18
V	Resistance Welding Control	8	4	4	2	10
	Total	42	18	30	22	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (Theory)

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr. No.	Unit No.	Practical Exercises (Outcomes in Psychomotor Domain)	Approx. Hours required
1		Test V/I Characteristics of SCR.	02
2	Ι	Test V/I Characteristics of DIAC.	02
3	Ι	Test V/I Characteristics of TRIAC.	02
4	Ι	Test Characteristics of Opto-Isolator.	02
5	Ι	Test Characteristics of power MOSFET.	02
6	Ι	Test Characteristics of UJT.	02
7	Ι	Test R-C phase shift control of SCR using UJT.	02
8	Ι	Test outputs of PUT as relaxation oscillator using MULTISIM.	02
9	Ι	Test outputs of Class A Load Commutation using MULTISIM.	02
10	Ι	Test outputs of Class A Load Commutation using physical components.	02

Sr. No.	Unit No.	Practical Exercises (Outcomes in Psychomotor Domain)	Approx. Hours required
11	Ι	Test outputs of Class B Resonant Pulse Commutation using MULTISIM.	02
12	Ι	Verify outputs of Class B Resonant Pulse Commutation using physical components.	02
13	Ι	Test outputs of Class C Complementary Commutation using MULTISIM.	02
14	Ι	Test outputs of Class C Complementary Commutation using physical components.	02
15	Ι	Test outputs of Class D Impulse or Auxiliary SCR commutation using MULTISIM.	02
16	Ι	Test outputs of Class D Impulse or Auxiliary SCR commutation using physical components.	02
17	Ι	Test outputs of Class F Line or natural Commutation using MULTISIM.	02
18	Ι	Test outputs of Class F Line or natural Commutation using physical components.	02
19	II	Test Half control bridge converter.	02
20	II	Test Full control bridge converter.	02
21	III	Test parallel inverter using two SCRs	02
22	III	Test basic operation of series Inverter.	02
23	III	Test chopper circuits with load.	02
24	IV	Test speed control of A.C. Motor using DIAC-TRIAC.	02
25	IV	Test D.C motor speed control using chopper.	02
26	IV	Test alarm circuit using MULTISIM.	02
27	IV	Test D.C Static switch using MULTISIM.	02
28	V	Test Sequential Timer operation using IC-555 for resistance welding process.	02
		Total	56

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Prepare journals based on practical performed in laboratory.
- ii. Do assignments related theory topics.
- iii. Learn troubleshooting techniques and steps to troubleshoot DC motor, AC motor.
- iv. Learn troubleshooting steps to troubleshoot inverter.
- v. Check the performance of chopper, inverter using simulation software like MATLAB.
- vi. Visit industries such as chemical industries, petroleum industries, production industries, manufacturing industries, automobile industries, power Industries etc. and study various instruments used.
- vii. Take up a small technical projects based on any advance theory topic.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Show video/animation film to demonstrate the working principles, constructional features, testing and maintenance of different types of power control devices.
- ii. Use Flash/Animations to explain the working of different DC, AC and stepper motor.

- iii. Arrange Industrial Visit for students (chemical industries, petroleum industries, production industries, Manufacturing industries, Automobile industries, Power Industries)
- iv. Ask students to explore internet about recent developments and prepare seminar presentations on relevant topics.
- v. Give mini technical projects based on advance theory topics.
- vi. Arrange expert lectures of instrumentation engineers working in industries.

10. SUGGESTED LEARNING RESOURCES

A) Books

S. No.	Title of Book	Author	Publication
1	Industrial Electronics	Bhattacharya S K and	TMH Publication, New Delhi
1.	and Control	Chatterjee S.	
n	Power Electronics	Singh M D and	TMH Publication, New Delhi
۷.		Khanchandani K.B.	
2	Power Electronics And	Jain Alok	Penram International
3.	Its Applications	0	Publication, New Delhi
4	Power Electronics	Bimmhra B S	Khanna Publication, New
4.			Delhi
5	Industrial Electronics	Paul Biswanath	PHI Learning New Delhi
5.	And Control		
	Power Electronics-	Rai Harish C.	Galgotia Publication,New
6.	Devices, Circuits,		Delhi
	Systems And		
	Applications		

B) Major Equipment/ Instrument with Broad Specifications

- i. Function Generator: Sine, square, triangle Wave etc. with frequency range 10 Hz to 100 kHz
- ii. DC power supply: $-30 \rightarrow 0 \rightarrow +30$ V with at least 1A current capacity.
- iii. Dual channel CRO: At least 20MHz or higher
- iv. Multi meter: Capable of measuring AC and DC current, voltage and resistance.
- v. Electrical tool kit: Maintenance of trainer boards.
- vi. Circuit/Trainer board/ Demonstration modules: For performing relevant practical's with inbuilt power supply

C) Software/Learning Websites

- i. www.nptel.iitm.ac.in.
- ii. www.youtube (lectures on Power electronics)
- iii. www.howstuffworks.com.
- iv. www.alldatasheet.com
- v. MATLAB/SIMULINK.
- vi. Electronics Work bench.
- vii. MULTISIM.
- viii. Scilab.
- ix. Caspoc.

11. **COURSE CURRICULUM DEVELOPMENT COMMITTEE**

Faculty Members from Polytechnics

- Prof. S. Z. Shyara, Sr. Lecturer, A.V.P.T.I. Rajkot
- Prof R. D. Sathvara, Sr. Lecturer, G.P. Gandhinagar
- Prof. A. M. Patel, Sr. Lecturer, G.P. Palanpur
- Prof. H. P. Patel, Lecturer, G.P. Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- • Dr. (Mrs.) C.S. Rajeshwari, Professor and Head, Dept. of Electrical and Electronics Engineering,
- Dr. Joshua Earnest, Professor, Dept. of Electrical and Electronics Engineering,

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: DCS AND SCADA (COURSE CODE: 3361703)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	Sixth

1. RATIONALE

In present global scenario of manufacturing, industries are moving towards more and more automation. Small scale and medium scale industries require PLC and SCADA technology, but large scale and very large scale industries require DCS. So, it is very necessary for instrumentation engineers to have knowledge of both DCS and SCADA. So this course attempts to provide basic configurationally knowledge of these technologies to develop operational competency. Hence this course is very important for instrumentation engineers who want to specialize in industrial automation.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Configure and maintain DCS and SCADA system related to instrumentation and control for industrial automation.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i. Identify and interpret PI diagram on HMI.
- ii. Identify different elements of SCADA.
- iii. Interpret the functionality of various elements of SCADA.
- iv. Control process parameters of given process using DCS and SCADA

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits Examination Sche					on Scheme					
	(In Hou	urs)	(L+T+P)	Theory Marks		Theory Marks		Pra Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA			
3	0	2	5	70	30	20	30	150		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes (In Cognitive Domain)	Topics and Sub-topics
Unit – I DCS Structure	1a. Sketch and explain hierarchical architecture of DCS	1.1 DCS architecture
	1b. Explain database organization in DCS with sketch.	1.2 Database organization in DCS
	1c. Identify, explain and select system elements of DCS	1.3 System elements of DCS 1.3.1 Field station 1.3.2 Intermediate station 1.3.3.Central computer station
	 1d. Define reliability parameters of DCS and determine Interrelationship between them. 1e. Apply major voting technique to determine reliability of DCS 	1.4 Reliability parameters of DCS
	1f. Classify different types of alarms and briefly describe each of them	1.5 Classification of alarms in DCS
Unit– II HMI IN AUTOMATION	2a. Sketch and explain in brief basic structure of Automation system.	2.1 Automation system structure
	 2b. Determine transfer of control commands for Instrumentation subsystem. 2c. Classify various types of devices connected to Instrumentation subsystem. 	2.2 Instrumentation subsystem
	 2d. Identify functional steps performed by control subsystem. 2e. Describe interface mechanism to interface control subsystem with other subsystems. 2f. Explain interfacing of control subsystem with Instrumentation subsystem with the help of suitable example. 2g. Explain interfacing of control subsystem with human interface subsystem with the help of suitable example. 	2.3 Control subsystem

Unit	Major Learning Outcomes	Topics and Sub-topics
	(In Cognitive Domain)	
	2h. Explain Human Interface subsystem in brief with sketch.2i. Identify and select active display elements and active control elements of operator panel.	2.4 Human Interface subsystem 2.4.1 Operator Panel 2.4.2. Construction of the panel 2.4.3. Interfacing with
	 2j. Compare basic approach and mimic approach for the construction of HMI panel. 2k Sketch interfacing of mimic panel 	control subsystem 2.4.4 Types of mimic panels
	2k. Sketch interfacing of hinne panel with control subsystem.2l. State and compare types of mimic panels	2.5 Advance Human Interface System
	2m. Explain Intelligent operator panel of HMI.	Operator Panel 2.5.2. Operator Station
	2n. Explain operator station of advanced human interface with suitable example.	Station
Unit– III	3a. Define SCADA.	3.1 Definition of SCADA
Introduction to SCADA	 3b. Enumerate application areas of SCADA. 3c. Sketch architecture of SCADA and Describe Major Elements of SCADA 	 3.2 Application area of SCADA 3.3 Major elements of SCADA 3.4 Advantages and disadvantages of SCADA
	3d. Compare given automation systems.	SCADA,DCS,PLC and Smart Instrumentation
Unit– IV	4a. Describe the terms that deal with	4.1 Definition and Introduction
Real Time	Ab Describe real time control for	A 2 Real time control for
Systems and	continuous process with suitable	Continuous process
SCADA	example and bar-graph.	
Software 🛛 📐	4c. Describe master-slave	4.3 Communication Access and
	communication access method in brief.	Master-Slave concept 4.4 Determination of Scan
	4d. Determine scan interval for	Interval
0	4e. Describe SCADA software	4.5 SCADA software
	components in brief.	components
	4f. Implement FBD technique on suitable examples.	4.6 Concept of FBD technique 4.7 Comparison of centralized
	4g. Compare centralized and distributed	and distributed processing
	processing.4h. Explain HDLC protocol used in SCADA.	4.8 HDLC Protocol

Unit	Major Learning Outcomes	Topics and Sub-topics	
	(In Cognitive Domain)		
Unit– V	5a. Explain Hardware structure of	5.1 Remote Terminal Unit	
	RTU.	(RTU)	
SCADA	5b. Test the given RTU.	5.1.1 Structure of RTU	
Hardware	5c. Explain Maintenance procedure of	5.1.1.1.CPU	
	RTU.	5.1.1.2.Analog I/O	
	5d. List the typical requirements for	5.1.1.3.Pulse I/P	
	the RTU system.	5.1.1.4. Digital I/Os	
	5e. Describe ANSI/IEEEC37.1	5.1.1.5.Communication	
	protocol in brief.	Interface	
		5.1.1.6.Power supply	
		5.1.1.7.RTU Rack and	
		Enclosure	
		5.1.2. Test and maintenance	
		of RTU	
		5.1.3. Requirements for RTU	
		system	
		5.1.4. ANSI/IEEE C37.1	
		Protocol	
	5f. Explain hardware structure of	5.2 Master Terminal Unit	
	MTU.	5.2.1. Hardware structure	
	5g. Describe functions of MTU in	5.2.2. Functions of MTU	
	brief.	5.2.3. Configuration of MTU	
	5h. Configure MTU with suitable	5.2.4. Redundant MTU	
	example.	system	
	5i. Explain redundancy concept in		
	MTU system.		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	DCS Structure	06	07	04	03	14
II	HMI for Automation	10	04	05	05	14
III	Introduction to SCADA	04	02	03	02	07
IV	Real time system and SCADA					
	software	10	03	07	04	14
V	SCADA Hardware	12	07	07	07	21
	Total	42	23	26	21	70

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF PRACTICALS/EXERCISES

The practical should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are

GTU/ NITTTR Bhopal/14

able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes.

S. No.	Unit No.	Practicals/Exercises (Outcomes in Psychomotor Domain)	Approx. Hours Required
1	Ι	Identify and select system elements of DCS.	2
2	Ι	Tune the DCS controller by applying suitable PID control algorithm.	2
3	Ι	Determine the reliability of given DCS system.	2
4	Ι	Control level and flow of given continuous process using DCS.	4
5	II	Measure temperature and level for the given process using Instrumentation subsystem.	2
6	II	Interface control subsystem with Instrumentation subsystem.	2
7	III	Interface control subsystem with human interface subsystem.	2
8	III	Mount digital panel meter on operator panel.	2
9	III	Mount different types of switches, buzzers and indication lamp on operator panel.	2
10	III	Make necessary connections to interface various devices mounted on control panel. Test the panel by providing appropriate inputs and checking the corresponding outputs.	2
11	IV	Develop SCADA mimic diagram for tank level control	2
12	IV	Develop SCADA mimic diagram for tank pressure control	2
13	IV	Develop SCADA mimic diagram for tank temperature control	2
14	IV	Develop SCADA mimic diagram for flow control in the given process	2
15	IV	Simulate level control system using available SCADA system	2
16	IV	Simulate Pressure control system using available SCADA system	2
17	IV	Simulate Temperature control system using available SCADA system	2
18	IV	Simulate flow control system using available SCADA system	2
19	IV	Control the tank level using available PLC/DCS and SCADA	4

S. No.	Unit No.	Practicals/Exercises (Outcomes in Psychomotor Domain)	Approx. Hours Required
		system. Use On/Off control action	
20	IV	Control continuous level in the tank using PID control action, available PLC/DCS and SCADA system. Show effect of controller tuning on its control performance.	4
21	IV	Control temperature and pressure of the process tank using available PLC/DCS and SCADA system	4
22	IV	Simulate mixing process in the tank using available SCADA system	2
23	IV	Control mixing process in the tank using available PLC and SCADA system	4
24	IV	Simulate bottle filling system using available SCADA system	2
Total	Hours		58
Note	Darform	any of the precision every second provided from above list for total of minimum	n 29 hours

Note: Perform any of the practical exercises from above list for total of minimum 28 hours depending upon the availability of resources so that skills matching with the most of the outcomes of every unit are included.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- Following is the list of proposed student activities such as:
- i. Prepare journals based on practical performed in laboratory.
- ii. Solve different type of numerical problems from different books as possible
- iii. List controlling parameters for different process and find how they affect the performance of plant.
- iv. Find troubleshooting techniques and steps to troubleshoot DC drives. Simulate various components of SCADA
- v. Analyze the specifications for various types of DCS.
- vi. Find practical applications of DCS and SCADA in various industries.
- vii. Make list of various industries based on implemented automation system and also specify the sub process if more than one system is implemented.
- viii. Check the performance of at least two different types of system using simulation technique.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Show video/animation film on related topic
- ii. Arrange a visit to nearby big industry.
- iii. Use flash/animations to explain the working of different control devices.
- iv. Give mini projects to students.
- v. Arrange expert lecture by engineers working in industry on DCS and SCADA technology.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Distributed Computer Control for Industrial	Dobrivoje Popovic and Vijay Bhatkar.	Marcel Dekker Inc.,1990

GTU/ NITTTR Bhopal/14

S. No.	Title of Book	Author	Publication
	Automation		
2.	Overview of Industrial Process Automation	KLS Sharma	Elsevier Publication
3.	Instrumentation Engineer's Handbook Power Electronics	Liptak B.G.	Chilton Book Co., Philadelphia
4.	Practical SCADA for Industry	David Bailey, Edwin Wright	Newnes, (an imprint of Elsevier), 2003
5.	SCADA-Supervisory Control and Data Acquisition System	Stuart A. Boyer	ISA publication (3 rd Edition)
6.	Practical Distributed Control System for Engineers and Technicians		IDC Technologies
7.	Computer based Industrial Control	Krishnakant.	PHI, New Delhi,5 th Edition or latest

B) List of Major Equipment/ Instrument with Broad Specifications

- i. Electrical tool kit
- ii. Multi-meter
- iii. Distributed Control System with at least 2 analog I/O module, 2 digital I/O module, 1 Engineering Configuration unit, 5 operating work stations, LAN with redundant LAN hub/switch and 16 node facility
- iv. 24 analog input module (8 analog input module 3NO.)
- v. 24 analog output module (8 analog input module 3NO.)
- vi. 24 digital input module (8 digital input module 3 NO.)
- vii. 24 digital output module (8 digital input module 3 NO.)
- viii. level switch
- ix. temperature switch
- x. flow switch
- xi. 3" conveyor system operated 12V DC motor with digital shaft encoder
- xii. Proximity switch (Inductive, Optical, motion, light etc.)
- xiii. 12 V DC motor with digital shaft encoder
- xiv. **PLC** based Automatic bottle filling plant interfacing with DCS software.
- xv. Flow, temperature, level control setup for DCS based automation using Flow, temperature, level switches.

C) List of Software/Learning Websites

- i. http://aboutinstrumentation.blogspot.co.uk/2010/12/dcs.html
- ii. http://www.instrumentationengineers.org/2012/02/plc-dcs-scada-hmi-forbeginners.html
- iii. http://www.eng-tips.com/viewthread.cfm?qid=161284

http://what-instrumentation.blogspot.co.uk/p/difference-between-scada-dcs-andiv. plc.html

11. **COURSE CURRICULUM DEVELOPMENT COMMITTEE**

Faculty Members from Polytechnics

- Prof. J.T.Patankar, HOD IC, Government Polytechnic, Ahmedabad
- Prof. A.K.Bilkhia, Sr. Lecturer in IC, Government Polytechnic, Gandhinagar
- Prof. N.B.Mehta Lecturer in IC, Government Polytechnic, Ahmedabad
- Prof. S.K.Raval, Lecturer in IC, Government Polytechnic, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- , D. .cal & Els. • Dr. (Mrs.) C.S. Rajeshwari, Professor and Head, Dept. of Electrical & Electronics Engineering,
- Dr. Joshua Earnest, Professor, Dept. of Electrical & Electronics Engineering,

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INDUSTRIAL DATA COMMUNICATION (COURSE CODE: 3361704)

Diploma Programmers in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	Sixth

1. RATIONALE

In the present industrial scenario the role of instrumentation is becoming more vital day by day specially in case of industrial automation. More advanced, precise and complex instrumentations are being employed in the industry. These advance instruments requires communication of data from equipment/machines to instruments and vice versa for process and quality control. Diploma engineers should therefore be able to identify, classify, troubleshoot and maintain the different industrial data communication systems employed for instrumentation. Therefore, this course has been designed so that students will be able to test, build, wire and troubleshoot the different types of industrial data communication. Thus this course is very important for instrumentation engineers who want to work in industrial automation sector.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Install and maintain hardware of FieldBus, ProfiBus, HART and Modbus Network employed in data communication circuits.

3. COURSE OUTCOMES

The theory should be taught and practical should be performed in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i. Identify network on the basis of various network parameters.
- ii. Identify OSI-ISO and TCP/IP network models.
- iii. Select guided and unguided medium for various types of data transmission.
- iv. Assign IP address to the network and network component as per the networks.
- v. Install various types of network devices and other network hardware for Field and ProfiBUS.
- vi. Troubleshoot problems in hardware/software employed in data communication circuit

Teaching Scheme			Total	Examination Scheme						
(In Hours)			Credits (L+T+P)	Theory Marks		Theory Marks Pr		Prac Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	РА			
3	0	2	5	70	30	20	30	150		

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit ESE -End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I Local Area Network	 1aJustify need of Computer Networks in automation. 1bDescribe the functions of various components of Computer Networks. 1cCompare various computer network topologies. 	 1.1.Computer Networks in instrumentation 1.2.Components of Computer Networks: hardware and software 1.3.Network topologies: Star, Ring, Bus, Mesh
	 1dClassify computer networks- Based on Transmission, scale, and Architecture. 1eDifferentiate LAN, WAN, MAN. 1fDescribe configuration of LAN with example. 1gState the applications service offered by WAN. 1hExplain functions of VPN with example 	1.4.Network Classification Based on Transmission Technologies: Point- to-point, broadcast 1.4.1.Based on scale: LAN, WAN, MAN, VPN, Internet 1.4.2.Based on Architecture: Peer to Peer, Client Server, advantages of Client Sever over Peer-to-Peer Model
Unit – II Network Devices and	 2aJustify the need of protocol. 2bExplain the need for layer modeling. 2cDescribe the functions of each layer of OSL Deference model 	 2.1Basics of Protocol and its need 2.2Brief functional description of each The OSI-ISO Reference Model
Communic ation Protocol	 layer of OSI Reference model. 2dDescribe the functions of each layer of TCP/IP Reference model. 2eCompare the major features of OSI and TCP/IP model. 2fExplain Format of IP v4 and IPv6 protocol. 2gExplain IP addressing scheme with examples. 2hDescribe Domain Name system (DNS). 	 2.3The TCP/IP Reference Model: Brief functional description of each of the Layer with list of protocols 2.4 IP layer Protocols: IPv4 and IPv6 frame Format (Limited to format only) 2.5Internet addressing: Network addressing, Subnet and subnet masking, gateway addressing, broadcast addressing, dotted decimal notation, loopback addressing 2.6Domain Name System(DNS): Introduction, mapping to IP addresses
Unit – III Network Media and Hardware	 3aExplain characteristics of guided and unguided transmission media. 3bDescribe specifications of UTP 	3.1Transmission Media: Unguided and Guided media, Wired and Wireless, UTP, Coaxial and Fiber optical cable

	and coaxial cable. 3cDescribe specifications of Wired and Wireless. 3dSketch constructional details of UTP and coaxial cable with labels.	2 2Turner of Commentance DI 45, DI 11
	3fDescribe different connectors with	BNC, BNC –T, BNC Terminator,
	neat sketch.	Fiber optic connectors:- Subscriber
	3gList features of different network	Channel(SC), Straight Tip(ST),
	interface card.	Mechanical transfer – registered
		3 3Network Interface Card (NIC)
		ARCNET, Ethernet.
	3hExplain functions of following	3.4Network connecting devices:
	network devices: Repeater, Hub,	Repeater, Hub, Bridge, Switch,
	Bridge, Switch, Router,	Router, Gateway, Access point,
	Gateway, Access point, Wireless Access points	Wireless Access points
	3iList features of different types of	3.5Servers introduction : File, Print, Mail.
	Servers.	Proxy, Web
Unit – IV	4aDiscuss benefits of Foundation	4.1Introduction to Foundation
Basics of	Fieldbus.	Fieldbus
Fieldbus	4bSketch waveforms showing Manchaster Bi phase I	4.1.1 Physical layer and wiring
anu ProfiBus	encoding scheme with four	4 1 2Data Link layer
Timbus	encoding states.	4.1.3Application layer
	4cSketch waveforms showing use of	4.1.4User layer
	N+ and N- encoding states.	
	4dDraw OSI model of the FF	
	protocol stack.	
	Foundation Fieldbus in brief	
	4fDraw data link layer packet format	
	for Foundation Fieldbus.	
	4gDescribe application layer of	
	Foundation Fieldbus in brief.	
()	•4hDraw the passage of information	
	Foundation Fieldbus	
	4iList the important points to be	
	considered while preparing	
	termination for Foundation	

	4jDraw and explain wiring	4.2Wiring and installation practice
	configuration of Foundation	with Fieldbus
	Fieldbus system	4.2.1Termination Preparation
	4kList the factors need to be known	4.2.2 Installation of the complete
	when troubleshooting the power	system
	system of an FE system	4 2Troubleshooting of foundation
	41Discuss the communication	4.5 Houseshooting of foundation
	41Discuss the communication	1 2 1 Judge de stien de nheering
	problems of Foundation	4.3.1 Introduction to physical
	Fieldbus.	problem
	4mState the parameters which can	4.3.2Power problem
	be checked by Foundation	4.3.3Communication problem
	Fieldbus test equipment.	4.3.4Test equipment for
		foundation field bus
	4nDescribe the versions (ProfiBus	4.4Introduction to ProfiBus standard
	DP, ProfiBus FMS and	4.5ProfiBus protocol stack
	ProfiBusPA) of Profibus	4.5.1 Physical layer
	standard in brief.	4.5.2Data Link layer
	4oDraw Profibus protocol stack	4.5.3 Application layer
	4pList the features of Physical laver	
	of Profibus DP standard	
	4 Draw and explain in brief about	
	hybrid medium access control	
	scheme of Profibus	
	ArDifferentiate between token	
	passing and polling technique	
	used in Drofibus for medium	
	used in Profibus for medium	
	access.	
	4s Describe token passing method of	
	Prolibus in brief.	
	4tState various troubleshooting	4.61 roubleshooting of Profibus
	tools for profibus network and	
	explain any one.	
	4uExplain how the common	
	problems of Profibus DP can be	
1	identified.	
Unit – V	5aWrite the salient feature of HART	5.1Concept of Highway Addressable
HART and	protocol which is generally not	Remote Transducer (HART)
MODBUS	found in other protocol.	5.2HART and smart Instrumentation
	5bDiscuss the features of HART for	
	smart instrumentation.	
	5cDescribe HART protocol in brief.	5.3HART protocol
	5dDraw and explain HART point-to-	
	point communication.	
	5eDraw and explain HART multi-	
	point communication.	
	5fState the uses of HART handheld	
	communicator.	
	5gSketch the connection diagram of	
	HART handheld communicator	5.4HART Physical layer
	TIAKT Handheid communicator.	J.4IIAKI I IIysicai layei

 5hShow HART protocol implementation of OSI layer model. 5iDraw HART data link frame format. 5jList the benefits of HART. 5kDescribe the trouble shooting of HART network in brief. 	5.5HART Data link layer5.6HART benefits5.7Troubleshooting of HART
 51State the limitations of Modbus network. 5mState transmission modes used in Modbus and give their short description. 5nDraw and explain in brief about format of Modbus message frame. 	5.80verview of Modbus protocol 5.9Modbus protocol structure
 50Describe Read coil or digital output status (function code 01) of Modbus with suitable example. 5pDescribe Read digital input status (function code 02) with suitable example. 5qDescribe Read holding registers (function code 03) with suitable example. 	 5.10 Function codes 5.10.1 Read coil or digital output Status (function code 01) 5.10.2 Read digital input status (function code 02) 5.11 Read holding registers (function code 03)

6. SUGGESTED SPECIFICATIONTABLE WITH HOURS&MARKS (Theory)

1

Unit	it Unit Title Teaching			Distribution of Theory Marks			
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Local Area Network	08	4	6	4	14	
II	Network Devices and	09	4	6	4	14	
	Communication Protocol						
III	Network Media and Hardware	09	2	6	6	14	
IV	Basics of Fieldbus and ProfiBus	08	4	5	4	14	
V	HART and ModBUS	08	4	6	4	14	
	Total	42	18	30	22	70	

Legends: R = Remember; **U**= Understand; **A**= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills(**out comes in psychomotor and affective domain**) so that students are able to acquire the competencies / program out comes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus overall development of **Program Outcomes** (as given in a common list at the beginning of curriculum document for this program) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes in Psychomotor Domain)	Approx. Hours Required
1	Ι	Prepare detailed report of existing LAN in the Department/Institute	04
2	Ι	Connect computer terminal in various physical topologies and test the data transfer	02
3	II	Install/configure/Test a small wireless network using access points	02
4	II	Install/configure/Test Peer to Peer LAN and sharing of resources	02
5	II	Install/configure/Test Network operating System	02
6	II	Configure/Test Internet connectivity	02
7	II	Install and configure a Firewall for the network security	02
8	II	Check performance of network using ping, trace route commands	02
9	Ш	Compare performance of various types physical layer Connectors	02
10	ш	Compare performance of various types of Transmission media. and Connectors	02
11	III	Prepare and Test Straight UTP Cable	02
12	III	Prepare and Test Cross UTP Cable	02
13	III	Prepare and Test Cross CAT5, CAT6 and RJ11Cable	02
14	III	Install/configure/Test Network Interface Card/port	02
15	III	Install/configure/Test Networking devices	02
16	III	Install/configure/Test small LAN using Hub/switch	02
17	III	Install/configure/Test File Server	02
18	III	Install/configure/Test Print Server	02
19	III	Install/configure/Test Web Server	02
20	IV	Configure the fieldbus wiring	02
21	IV	Prepare the termination for Foundation Fieldbus	02
22	IV	Select appropriate cable for FF and Profibus network	02
23	IV	Prepare D-type connector with built in terminator for	02

		Profibus troubleshooting	
24	IV	Test the operational Fieldbus Network using Fieldbus tester	02
25	V	Transmit 8 bit digital signal superimposed on 12mA analog signal using HART FSK technique	02
26	V	Install and Configure HART point-to-point communication Network	02
27	V	Connect HART handheld communicator to HART network	02
Total Ho	ours		56
	C		•

Note: Perform any of the practical exercises from above list for total of minimum 28 hours depending upon the availability of resources so that skills matching with the most of the outcomes of every unit are included.

8. SUGGESTED STUDENT ACTIVITIES

- i Explore internet and visit websites of reputed companies working in the area of data communication to get knowledge about latest technologies.
- ii Prepare small theoretical technical projects.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If any)

- i. Show videos/animation for explaining functioning of different devices and systems.
- ii. Ask students to explore the internet and prepare presentations on relevant topics and present in class.
- iii. Arrange Industrial visit for students to industries having automation such as chemical industries, petroleum industries, production industries, Manufacturing industries, Automobile industries.
- iv. Arrange expert lectures by instrumentation engineers working in the area of data communication for automation.

10. SUGGESTED LEARNING RESOURCES

A) Books

S. No.	Title of Book	Author	Publication
1	Computer Networks	Tannebaum AndrewS	Pearson, New Delhi, 5th
1.		Wetherall David J.	Edition, 2011
2	Data and Computer	Stallings Williams	PHI Learning, New Delhi
۷.	Communication,		(Latest edition)
3	Computer Networks	Trivedi Bhushan	Oxford University Press,
5.	<u> </u>		New Delhi 2013
	Data Communication and	Forouzen	Tata McGraw Hill,
4.	Networking,		Education New Delhi (Latest
			edition)
	Practical Industrial Data	Steve Mackay,	Newnes
5.	Networks: Design,	Edwin Wright, Deon	An imprint of Elsevier
	Installation and	Reynders, John Park	
	Troubleshooting		
6	Data Communication	Sharma Sanjay	S.K.Kataria and Sons, New
6.	Networks		Delhi (Latest edition)

B) Major Equipment/Instrument with Broad Specifications

- i Computer Hub 8/16 node
- ii Router/ Wireless Router
- iii Modem 256 / 512 KBS
- iv Switch 4/8/16/24/32
- v Hart Handheld Communicator
- vi Repeater
- vii Bridge
- viii LAN CABLE (CAT6, CAT5)
 - ix Coaxial Cable, UTP Cable, STP Cable, Fiber Optic Cable
 - x HART starter KIT
 - xi Profibus PA starter KIT

B) Software/Learning Websites

- i. www.nptel.iitm.ac.in.
- ii. www.isa.org
- iii. www.ieee.org
- iv. www.pacontrol.com
- v. www.ourinstrumentation.com
- vi. www.profibus.com
- vii. http://www.siemens.com
- viii. http://sine.ni.com/nips/cds/view/p/lang/en/nid/208382
- ix. http://www.prosoft-technology.com/Products/Schneider-Electric-Inchassis/PROFIBUS-DP-Master-Network-Interface-Module-for-Quantum
- x. www.rotork.com
- xi. www.ti.com
- xii. www.**fieldbus**.org/
- xiii. www.automation.com/pdf_articles/fieldbus.pdf
- xiv. www.yokogawa.com
- xv. www.mtl-inst.com
- xvi. www.ni.com/pdf/manuals/370729a.pdf
- xvii. www.**fieldbus**-international.com
- *xviii.* http://ab.rockwellautomation.com/Networks-and Communications/Process/ FOUNDATION-Fieldbus
 - xix. www.murrelektronik.com
 - xx. www.**fieldbus**inc.com
- xxi. www.abb.com
- xxii. www.mirosoft.com
- xxiii. www.datalink.com
- xxiv. www.dax.com
- xxv. www.cisco.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>Faculty Members from Polytechnics</u>

- Prof. J.T. Patankar, I/C HOD(IC), Govt. Polytechnic, Ahmedabad
- Prof. A. K. Bilakhia, Sr. Lecturer(IC), Govt. Polytechnic, Gandhinagar
- **Prof. N.B. Mehta**, Lecturer (IC), Govt. Polytechnic, Ahmedabad <u>Coordinator and Faculty Members from NITTTR Bhopal</u>

•Dr. Joshua Earnest, Professor, Dept. of Electrical and Electronics Engineering •Dr Shashi Kant Gupta, Professor and Coordinator for State of Gujarat

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PIC MICROCONTROLLER AND EMBEDED SYSTEMS (COURSE CODE: 3361705)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control	Sixth

1. RATIONALE

PIC Microcontrollers are being extensively used in the field of Embedded Systems. The students studying this subject are supposed to learn the architecture of a PIC Microcontroller and also get acquainted about their use for control purpose. In addition, the course will provide the knowledge of applications and interfacing of PIC microcontrollers used in the field of instrumentation & control. Thus this course is very useful for instrumentation engineers working in the area of embedded systems.

2. COMPETENCIES

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competencies:

- Program PIC microcontroller for data acquisition and processing application.
- Interface sensors, transducers, motors, relays, and various input/output devices with PIC microcontroller.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i. Identify and understand function of different blocks of PIC microcontroller.
- ii. Develop programs for data transfer, arithmetic, logical and I/O port operations.
- iii. Develop programs for PIC18 using "C".
- iv. Develop program for PIC18 Timers, Serial port and Interrupts using "C".
- v. Interface LCD, Keyboard, ADC, DAC, Sensors, Relays, DC motor and Stepper motor with PIC18 microcontroller.

4. **TEACHING AND EXAMINATION SCHEME**

Teaching Scheme		Total Credita	Total Examina Credits			neme		
(III HOUI	8)	(L+T+P)	Theory Marks		Prac Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150
3	0	2	05	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

1

5. COURSE CONTENT DETAILS

Unit		Major Learning Outcomes	Т	opics and Sub-topics
Unit I	10	Explain evolution of	11	Microcontrollers and
PIC	1a.	Microcontrollers and Embedded	1.1	Embedded Processors
Microcontroll		Processors	12	Overview of the PIC18
ers · History		1100035015.	1.2	Family
Features and	1b	Draw PIC18 PIN connection	13	PIC18 PIN connection
Architecture	10. 1c	Explain PIC18 Registers	1.3	PIC18 Configuration
	1d.	Explain file register allocation	1.1	Registers
	1.01	between GPR and SFR.	1.5	The WREG Register in
	1e.	Explain file register's status for the		PIC18.
		given instructions.	1.6	The PIC18 File
	1f.	Determine the contents of file		Register and access
		registers for the given set of		Bank.
		instructions.	1.7	Use of Instructions
			5	with the Default Access
			~	Bank.
	1g.	Explain PIC18 status register.	1.8	PIC18 Status Register.
	1h.	Find the status of different flags for		
		the given set of instructions		
	1i.	Represent data in various number	1.9	PIC18 Data Format and
		formats.		Directives.
	1j.	Explain given directives.		
	1k.	Explain program counter.	1.10	The Program Counter
		•. •		and Program ROM
	41			Space in the PIC18.
	11.	Explain features of RISC.	1.11	RISC Architecture in
	Im.	Compare Harvard architecture with		the PIC18.
The 4 T	2.	Von Neumann architecture	2.1	A mithematica Terratura ati a ma
Unit-II Cleasification	2a.	Explain various arithmetic	2.1	Arithmetic Instructions
Classification	24	Find the status of flags for a set of		
01 Instructions	20.	given instructions		
and I/O Port	20	Represent signed numbers in PIC18	2.2	Signed Number
Programming	20. 2d	Explain ΩV flag	2.2	Concepts and
Trogramming	2 u .	Explain OV hag.		Arithmetic Operations
	2e	Explain Logic and compare	2.3	Logic and Compare
	20.	instructions.	2.0	Instructions
	2f.	Find the contents of WREG register		
		after executing given instructions.		
	2g.	Explain rotate instructions.	2.4	Rotate Instruction and
	Ū	-		Data Serialization.
	2h.	Represent BCD and ASCII codes.	2.5	BCD and ASCII
	2i.	Convert given code.		Conversion.
	2j.	List PIC18 conditional Branch	2.6	Branch Instructions and
		instructions.		Looping.
	2k.	Explain Loop and nested loop.		

Unit		Major Learning Outcomes (in cognitive domain)	Т	opics and Sub-topics
	21.	Explain CALL, STACK and stack pointer.	2.7	Call Instructions and Stack
	2m.	Calculate time delay for the given	2.8	PIC18 Time Delay and
		set of parameters.		Instruction Pipeline.
	2n.	Explain alternate functions of Port	2.9	I/O Port Programming
	l	A, B, C and D.		in PIC18.
	2o.	Explain TRIS register role in		
		inputting and outputting data.	0.10	
	2p.	Explain single bit instructions.	2.10	I/O Bit Manipulation
	2q.	Develop a short program using bit		Programming.
	20	Instructions Evaluin data types widely used by	2.1	Data Turna and Tima
Unit - III	<i>3</i> a.	Explain data types widely used by	3.1	Data Types and Time
Programming	3h	Select data type for given variables		Delays III C.
in C	30. 30.	Give factors affecting time delay		
		code size in PIC18.	6	•
	3d.	Explain bit-addressable I/O	3.2	I/O Programming in C.
	l	programming.	× .	6 6
	3e.	Develop C program.		
	3f.	Explain bit wise logic operators.	3.3	Logic Operations in C.
	3g.	Develop C program.		
	3h.	Develop C program.	3.4	Data Serialization in C.
	3i.	Explain advantages and	3.5	Program ROM
	l	disadvantages using program ROM		Allocation in C.
	2.	space for data.		
	3]. 21r	Develop C program.	26	Data DAM Allocation
	JK.	state advantages and disadvantages	3.0	in C
	31	Develop C program		III C.
Unit – IV	4a	Explain the timers in PIC18	4.1	Programming Timers 0
PIC18	4b.	Develop C program on timers and		1. 2 and 3 in C.
Programming	\cap	counters.	4.2	Counter Programming.
in C: Timer,	4c.	Compare advantages of serial	4.3	Basics of Serial
Serial Port)	communication over parallel.		Communication.
and Interrupt	4d.	Describe serial communication		
	l	features and main registers used in		
\mathbf{O}		PIC18.		
	4e.	Interface PIC18 with RS232	4.4	PIC18 connection to
	4.6	connector.	1.5	RS232.
	41.	Develop a program.	4.5	Programming in C.
	4g.	Explain all interrupts.	4.6	PIC18 Interrupts.
	4h.	Discuss interrupts priority.		
	4i.	Develop a program.	4.7	Programming Timer,
	1			External Hardware,
	1			Serial communication
	1			and Port B change

Unit	it Major Learning Outcomes (in cognitive domain) Topics and Sub-to		opics and Sub-topics	
				interrupts.
Unit – V	5a.	Describe the functions of the pins of	5.1	LCD Interfacing
PIC18		a typical LCD.		
Interfacing :	5b.	Interface an LCD to the PIC18.		
LCD,	5c.	Interface a 4 x 4 keypad to the	5.2	Keyboard Interfacing
Keyboard,		PIC18 using "C".		
ADC, DAC,	5d.	Explain the process of Data	5.3	ADC Characteristics.
Sensor, Relay,		acquisition using 8 and 10 bit serial	5.4	ADC Programming in
DC motor,		and parallel ADC.		the PIC18
Stepper	5e.	Program the PIC18's ADC in C.		
Motor	5f.	Interface a DAC chip to the PIC18.	5.5	DAC Interfacing
	5g.	Interface temperature sensors to the	5.6	Sensor Interfacing and
		PIC18.		Signal Conditioning.
	5h.	Describe signal conditioning and its		
		role in data acquisition.		<u> </u>
	5i.	Interface the PIC18 with a relay.	5.7	Relays and Opto-
	5j.	Interface the PIC18 with an opto-	5.	isolators.
		isolator.		
	5k.	Interface the PIC18 with a stepper	5.8	Stepper Motor
		motor.		Interfacing.
	51.	Program PIC18 to control and		
		operate a stepper motor.		
	5m.	Interface the PIC18 with a DC	5.9	DC Motor interfacing
		motor.		and PWM.
	5n.	Describe DC motor speed control		
		using PWM.		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARK (Theory)

Unit	Unit Title Teaching Distribution of Theory I					y Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	PIC Microcontrollers : History,	08	04	04	06	14
	Features and Architecture	08	04	04	00	14
II	Classification of Instructions and	10	04	04	06	14
	I/O Port Programming.	10	04	04	00	14
Ш	PIC18 Programming in C.	07	02	02	06	10
IV	PIC18 Programming in C: Timer,	07	02	04	08	14
	Serial Port and Interrupt.	07	02	04	08	14
V	PIC18 Interfacing : LCD,					
	Keyboard, ADC, DAC, Sensor,	10	02	04	12	18
	Relay, DC motor, Stepper Motor					
	Total	42	14	18	38	70

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED EXCERCISES / PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Approx. Hours Required		
1	1 I Test Hardware and Software development tool for PIC18.				
2	Ι	Check Register and Memory with MPLAB Simulator	02		
3	II	Develop and Execute Programs on Arithmetic instructions.	02		
4	II	Develop and Execute Programs on Logical and Compare instructions.	02		
5	II	Develop and Execute Programs on Rotate instructions and Data Serialization.	02		
6	II	Develop and Execute Programs on BCD and ASCII code conversion.	02		
7	II	Develop and Execute Programs on branching instructions and Looping.	02		
8	II	Develop and Execute Programs on Call instructions.	02		
9	II	Develop and Execute Programs on Time delay.	02		
10	II	Develop and execute program on I/O Port programming.	02		
11	II	Develop and execute programs on single bit manipulation.	02		
12	IV	Develop and execute programs on Timers and Counters.	02		
13	IV	Develop and execute programs on Serial Communication.	02		
14	IV	Develop and execute programs on Different Interrupt handling.	02		
15	V	Interface LCD with PIC18.	02		
16	V	Interface Keyboard with PIC18.	02		
17	V	Interface ADC with PIC18.	02		
18	V	Interface DAC with PIC18.	02		
19	V	Interface Different Sensors with PIC18.	02		
20	V	Interface relay with PIC18.	02		
21	V	Interface stepper motor with PIC18.	02		
22	V	Interface DC motor with PIC18.	02		
23	V	Perform DC motor speed control using PWM with PIC18.	02		
Total Hours 46					
Note: Perform any of the practical exercises from above list for total of minimum 28					
hours depending upon the availability of resources so that skills matching with the most of					
the outcomes of every unit are included.					

8. SUGGESTED STUDENT ACTIVITIES

Following are some of the proposed student activities such as:

- i. Execute PIC18 "C" programs using microcontroller Development kits.
- ii. Verify above programs using simulators.
- iii. Interface various peripherals with PIC 18 microcontroller.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange seminar/symposium where student should present on different aspects of PIC Microcontroller
- ii. Ask students to do mini projects related to PIC Microcontroller
- iii. Arrange expert lecture by engineers having experience of using PIC for instrumentation purposes.

10. SUGGESTED LEARNING RESOURCES

A) Books

Sl. No.	Title of Book	Author	Publication
1.	PIC Microcontroller And	Mazidi M. A., McKinlay	Pearson Education
	Embedded Systems.	R. D., Causey D. 🛛 🌅	International, 2008
2.	PIC Microcontroller	Gaonkar R. S.	Penram International
			Publishing (India) Pvt. Ltd.
3.	PIC Microcontrollers –	Verle Milan	Mikroelektronika, 1 st
	Programming in C		Edition, 2009
4.	PIC Microcontroller	Matic Nebojsa	Mikroelektronika, 1st
			edition 2008
5.	Embedded C Programming	Barnett R. H., Cox S.,	Cengage; Pap/Cdr edition
	And The Microchip PIC	O'cull L.	2003
6.	Design with PIC	Peatman John B.	Pearson Education
	Microcontrollers		

B) Major Equipment/ Instrument with Broad Specifications

1.	Computer	capable to support "C" programming and required
		simulators.
2.	PIC 18 Development kit.	With inbuilt power supply, keyboard, LCD displays, ports
		for interfacing peripheral and memory.
3.	Microcontroller based	Capable to interface LCD, Keyboard, ADC, DAC, Sensor,
	interfacing study cards.	Relay, DC motor, Stepper Motor With PIC 18
		Development kit.
1	Microcontrollor Simulator	-

4. Microcontroller Simulator softwares.

C) Software / Learning Websites

- i. www.nptel.com
- ii. http://en.wikipedia.org/wiki/PIC_microcontroller
- iii. www.microchip.com/pic/
- iv. www.engineersgarage.com/articles/pic-microcontroller-tutorial
- v. www.best-microcontroller-projects.com/pic-microcontroller.html

- vi. www.pic18-simulator-ide.software.informer.com
- vii. www.gpsim.sourceforge.net

11. **COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics**

- Prof. M. V. Dabhi, I/C HOD (DBM), Government Polytechnic, Gandhinagar.
- Prof. A. M. Patel, Lecturer, Government Polytechnic, Palanpur.
- Prof. (Smt.) S. K. Raval, Lecturer, Government Polytechnic, Ahmedabad.
- Prof. M. J. Vadhavaniya, Lecturer, Government Polytechnic, Gandhinagar.

Coordinator and Faculty Members from NITTTR Bhopal

- • Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering
- Dr Shashi Kant Gupta, Professor and Coordinator for State of Gujarat

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: EMBEDED NETWORKS (COURSE CODE: 3361706)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation And Control	Sixth

1. RATIONALE

Embedded networks are widely used in portable Automatic systems like automobiles, Aeronautics etc. To control speed, autofocus, safety, interconnection and communication of various sensors is necessary. The students studying this course are supposed to learn the concept of real time networking, protocols like CAN, ZIGBEE, MODBUS etc. The course in addition, will provide knowledge of applications and interfacing of embedded networks. Thus this course is an important course for instrumentation engineers working in the area of imbedded instrumentation.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

- Explain real time embedded systems and embedded networks.
- Interface sensors, transducers, motors, relays and various input/output devices with Communication Highway.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i. Identify network types and topologies.
- ii. Explain Real Time Operating System (RTOS).
- iii. Build Controller Area Network (CAN).
- iv. Program Controller Area Network (CAN).
- v. Explain Advanced Wireless Networks (ZigBee).

4. **TEACHING AND EXAMINATION SCHEME**

Teaching SchemeTotal(In Hours)Credita			Examin	ation Scł	neme			
(8)	(L+T+P)	Theory Marks		Prac Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	РА	ESE	PA	150
3	0	2	05	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; PA - Progressive Assessment.

Housestion Papers.com

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes		Topics and Sub-topics		
Umt		(in cognitive domain)	10	pics and Sub-topics	
Unit – I	1a.	Define Network.	1.1	Need for	
Concept of	1b.	Explain Network types.		Networking.	
Networking.	1c.	Explain Class A, B, C, D networks with			
		their features.			
	1d.	Explain different Network Topologies.	1.2	Network	
	1e.	Discuss advantages and disadvantages of		Topologies.	
	1.0	different network topologies.	1.0	0.01	
	lt.	Explain OSI reference Model.	1.3	OSI reference	
				Model.	
	1g.	Explain different types of cables used in	1.4	Cables used for	
	0	Networking with their category		Networking.	
		description.		Ũ	
	1h.	Explain Cable connectors used in	3		
		Networking.	-		
	1i.	Define Patch cable and Cross over cable.			
	1j.	Discuss factors for the selection of cable.			
	1k.	Define CSMA / CA, CSMA / CD,	1.5	Concept of CSMA /	
	11	CSMA/CR.		CA, CSMA / CD,	
	11.	CSMA / CD CSMA / CP		CSMA / CR.	
Unit II	20	Explain concept and characteristics of	21	Introduction to	
Real Time	<i>L</i> a.	RTOS	2.1	RTOS	
Onerating	2h	Explain need of RTOS		K105.	
System	20. 2c.	Explain structure of RTOS.			
(RTOS).	2d.	Define multitasking and concurrency.			
	2e.	Explain conditions required for			
		multitasking in RTOS.			
	2f.	Discuss advantages and disadvantages of			
		multitasking in RTOS.			
Unit – III 🛛 🤞	3a.	Discuss Serial and Parallel transmission.	3.1	Bus System.	
Industrial	3b.	Define the given terms.		Terms: Bus line,	
Embedded				Bus Subscriber,	
Networking.				Gateway, Master /	
	30	Cive functional description of CAN	37	Controller Area	
	3d	Explain architecture of CAN	5.2	Network $(C \Delta N)$	
	3e.	Explain features of CAN		Network (CAN).	
	3f.	Compare CAN with OSI model.			
	3g.	Explain each field of CAN data frame.	3.3	CAN data frame.	
	3h.	Discuss Pinout diagram for DNA – CAN	3.4	Installation of CAN.	
		503.			
	3i.	Discuss CAN Bus wiring.			
	3j.	Explain CAN protocol and standard			
		specifications.			
	3k.	Explain pin assignment of 9 – pole	1		

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
	 DSUB connector. 31. Explain pin assignment of 5 – pole combicon connector. 3m. Explain rules for installation of CAN. 3n. Explain isolation in CAN transceiver. 	
	30. Troubleshoot the CAN.	3.5 Troubleshooting of CAN.
	3p. Explain architecture of smart sensors.3q. Explain various types of smart sensors.	3.6 Introduction to Smart Sensors.
Unit – IV CAN Programmin	 4a. Discuss steps for CAN programming. 4b. Draw flow chart for CAN transmitter. 4c. Draw flow chart for CAN receiver. 	4.1 Programming CAN.
g and Applications	4d. Explain the given applications.	 4.2 Applications of CAN: 4.2.1 Auto door locking in automobiles. 4.2.2 Speed Control. 4.2.3 Head light control. 4.2.4 ABS in automobile. 4.2.5 Air Bag control in automobiles.
Unit – V Advanced Wireless Networks.	 5a. Explain ZigBee stack architecture. 5b. Describe importance of ZigBee. 5c. Compare ZigBee with other wireless technologies. 5d. Describe ZigBee applications in brief 	5.1 Introduction to Zigbee.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit	Unit Title	Teachin	Teachin Distribution of Theory					
No.		g Hours	R	U	Α	Total		
			Level	Level	Level	Marks		
Ι	Concept of Networking.	08	07	04	03	14		
II	Real Time Operating System (RTOS).	06	03	02	02	07		
III	Industrial Embedded Networking.	16	07	11	10	28		
IV	CAN Programming and Applications.	06	04	06	04	14		
V	Advanced Wireless Networks	06	03	02	02	07		
	Total	42	23	26	21	70		

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes in Psychomotor Domain)	Approx. Hours Required
1	Ι	Debug Local Area Network.	02
2	Ι	Debug CWAN.	02
3	Ι	Debug Bus topology.	02
4	Ι	Identify OSI layers through LAN / CWAN.	02
5	Ι	Check different cables and connectors.	02
6	Ι	Install cables for LAN / CWAN.	02
7	II	Develop and Execute Programs for reading data from sensor.	02
8	II	Develop and Execute Programs for writing data to the output	02
0		device.	
9	III	Interface CAN 9 – pole DSUB connector.	02
10	III	Interface CAN 9 – pole combicon connector.	02
11	III	Develop a CAN data frame for given conditions.	02
12	III	Troubleshoot error in CAN.	02
13	IV	Develop and execute programs for CAN interfacing.	02
14	IV	Case study – 1. Auto door locking in automobile.	02
15	IV	Case study – 2. Speed Control in automobile.	02
16	IV	Case study – 3. Head light control in automobile.	02
17	IV	Case study – 4. ABS in automobile.	02
18	IV	Case study –5. Air Bag control in Automobile.	02
19	V	Develop wireless program using ZigBee module.	02
		Total Hours	38
Note:	Perform	any of the practical exercises from above list for total of m	inimum 28
hours d	lepending	g upon the availability of resources so that skills matching with	the most of
the out	comes of	every unit are included.	

8. SUGGESTED STUDENT ACTIVITIES

Following are the proposed student activities such as:

- i. Perform various tasks related to Embedded Networks in laboratory.
- ii. Perform various practical using simulators in laboratory.
- iii. Visit various industries using embedded instrumentation.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange seminar/symposium where student should present on different aspects of embedded networks.
- ii. Ask students to do mini projects related to embedded networks.
- iii. Arrange expert lecture by engineers having experience of using embedded networks for instrumentation purposes.

10. SUGGESTED LEARNING RESOURCES

A) Books

Sl. No.	Title of Book	Author	Publication
1.	Embedded / Real-Time Systems: Concepts, Design and Programming	Dr. Prasad K. V. K. K.	Dreamtech Press/Wiley India, 2003
2.	Real-Time Systems	Krishna C. M. and Shin K. G.	Mcgraw-Hill,1997
3.	Simple Real Time Operating System	Chowdary Venkateswara	Trafford Publishing, 2007
4.	Understanding and using the controller area network communication protocol	Di Natale, M.Zeng, H.giusto ,P,Ghosal	Springer publication, 2012
5.	Modern Automative technology	James E.Duffy	Goodheart-willcox company 2009
6.	Embedded Networking with CAN and CANopen	Olaf Pfeiffer, Andrew Ayre, Christian Keydel	Copperhill Technologies Corporation, 2008

B) Major Equipment/ Instrument with Broad Specifications

i.	Various Networking Cables and Connectors.	Capable to support "C" programming and required simulators.
ii.	Networking Tools.	With inbuilt power supply, keyboard, LCD displays, ports for interfacing peripheral and memory.
iii.	Simulators.	Capable to interface LCD, Keyboard, ADC, DAC, Sensor, Relay, DC motor, Stepper Motor With PIC 18 Development kit.
iv.	Hardware modules for CAN, ZigBee, MODBUS etc.	-

C) Software / Learning Websites

- i. http://www.zigbee.org/en/about/faq.asp
- ii. http://anideaclub.blogspot.in/2013/04/microcontroller-zigbee.html
- iii. www.microchip.com/pic/
- iv. www.engineersgarage.com/articles/pic-microcontroller-tutorial
- v. www.best-microcontroller-projects.com/pic-microcontroller.html
- vi. www.pic18-simulator-ide.software.informer.com
- vii. www.gpsim.sourceforge.net
- viii. http://inst.cs.berkeley.edu/~ee249/fa08/Lectures/handout_canbus2.pdf
- ix. http://www.eecs.umich.edu/eecs/courses/eecs373/Lec/W12Student/373CANpreso.pdf
- x. http://www.ueidaq.com/media/catalog/product/pdf/manual/dnx-can-503-manual.pdf
- xi. http://www.ecnmag.com/articles/2009/10/isolated-can-transceiver-assures-robust-fieldbusdesign
- xii. http://www.ti.com/lit/wp/spry200/spry200.pdf
- xiii. http://electronicsforu.com/newelectronics/circuitarchives/view_article.asp?sno=840&title%20 =%20Electronics+in+Cars&id=11280&article_type=8&b_type=new
- xiv. http://guides.machinescience.org/mod/book/view.php?id=706&chapterid=46
- xv. http://www.howstuffworks.com

, JOE

- 11. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>Faculty Members from Polytechnics</u>
 - Prof. M. V. Dabhi, Lecturer, Government Polytechnic, Gandhinagar.
 - Prof. A. M. Patel, Lecturer, Government Polytechnic, Palanpur.
 - Prof. (Smt.) S. K. Raval, Lecturer, Government Polytechnic, Ahmedabad.
 - Prof. M. J. Vadhavaniya, Lecturer, Government Polytechnic, Gandhinagar.

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Joshua Earnest**, Professor, Department of Electrical and Electronics Engineering
- Dr Shashi Kant Gupta, Professor and Coordinator for State of Gujarat.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PROJECT- II (WITH SEMINAR) (COURSE CODE: 3361707)

Diploma Programme in which this course is offered	Semester in which offered
INSTRUMENTATION AND CONTROL	SIXTH

1. **RATIONALE:**

For a diploma Instrumentation engineer, student expected to gain capabilities of doing independent and group work by carrying out successful project work. For that purpose student expected to learn, define problems, understand the problem, provide alternative solutions to the problems, design, fabricate, implement, test and installation of necessary circuits/system/software to solve the problem. As well as student expected to develop defined soft skills. So that after doing project work student should be confident enough get their employment.

Above mentioned expected outcome may achieved through Project-I, but to further enhance skills, particularly in interfacing area, students should identify and prepare their projects particularly in interfacing Process Instrumentation or Biomedical Instrumentation with various digital computing devices such as microprocessors, microcontroller, Computers, Programmable Logic Controllers, SCADA, DCS etc.

2. COMPETENCE:

The course should be facilitated and implemented, with the aim to develop Communicate and lead effectively as well as able to work independently but also collaboratively in multidisciplinary teams by acquiring following skills:

- Hard Skills: Planning, Interpret Technical Specifications, Designing, Fabrication, Implementation, Testing, Installation.
- Soft Skills: Report writing, presentation, Software development/Programming
- Interpersonal Skills: Team work, Communication, Coordination, awareness of market scenario such as costing of components/services.

3. TEACH	HING AND	EXAMINATION	SCHEME
----------	----------	-------------	--------

Teac	hing Sch	neme	Total Credits	Examination Scheme				
(In Hou	rs)	(L+T+P)	Theory	Marks	Practical N	Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
0	0	6	6	00	00	60	90	150

4. Course Detail.

Student should carry out one project during the term related to interfacing Process Instrumentation or Biomedical Instrumentation with various digital computing devices such as microprocessors, microcontroller, Computers, Programmable Logic Controllers, SCADA, DCS etc. Project may be pertaining to measurements of process variables and parameters, measurement, control and its interfacing with various Processors.

Guideline to form a group:

Students in group have to identify real life engineering problem from industry, academic institutions, or society. It is necessary to work in a group of minimum two students, individual student is not allowed (*Reason: every engineering activity is group activity*). Each group can have maximum four students if project complexity demands.

Guideline for selecting the project idea:

- 1. Student should read well known technical magazines such as electronics for you, elector-electronics; automate magazine, automation world, and instrument India etc.
- 2. Project volumes published by electronics for you magazine.
- 3. Student should refer resource web link given at last.
- 4. Refer link <u>http://www.techpedia.in/</u> collaborated by GTU innovation council cell.

Following list of projects are suggested for the guidance of faculties and students:

	Sr.No	NAME OF PROJECTS	AREA OF PROJECTS
	1.	Home Automation And Security Control Using Microcontroller.	
	2.	Remote controlled Stepper Motor Using	
U	s)	Microcontroller	
	3.	Ultrasonic Proximity Detector Using Microcontroller	DDOCESSOD DASED
	4.	RFID Based Device Control and Authentication	A DDI ICATION
		Using PIC Microcontroller	APPLICATION
	5.	Beacon Flasher Using Microcontroller	
	6.	Line Following Robotic Vehicle Using	
		Microcontroller	
	7.	Water Level Controller using 8051 Microcontroller:	

8.	Smart Card For Entry Employee Using Microcontroller	
9.	Password Based Door Lock System Using 8051	
10.	Digital Tachometer Using 8051 Microcontroller	
11.	PLC Based Dc Servo Motor Control System	
12.	PLC based injection Moulding machine	
13.	PLC based automatic car washing machine	
14.	PLC based Elevator Controller	
15.	PLC based Temperature/Pressure Controller	
16.	Industrial Timer Controller for Multiple Machines using PLC	
17.	Sequential Batch Process using PLC	
18.	Automated Railway Signaling and Monitoring using	
10	PLC	MEASUREMENTS OF
19.	PLC based Coffee Vending Machine	VADIADIES AND
20.	Automated Door open and close System using PLC	DADAMETEDS AND
21.	PLC based automatic bottle filling System	INTERFACING WITH
22.	water storage and distribution system for pharmaceuticals using PLC and SCADA	PLC AND SCADA
23	SCADA application of a water steam cycle of a	MISCELLANEOUS
23.	thermal power plant	
24	Microcontroller-Based Robotics and SCADA	-
2	Experiments	
25.	SCADA And PLC Based Distribution And Substation	
	Automation	
26.	SCADA System Design And Construction For Real-	
	Time Electrical Parameter Monitoring And Control	
27.	SCADA (Supervisory Control & Data Acquisition)	1
	for Remote Industrial Plant	
28.	Simulation approach on step speed control of	MEASUREMENTS OF
	Induction Motor using Lab View	PROCESS
29.	Design & Implementation of Smart House Control	VARIABLES AND
	Using Lab VIEW	PARAMETERS AND
30.	Lab view based instrumentation system for solar-wind	INTERFACING WITH
	hybrid station	<u>COMPUTERS</u>
31.	Multi-Device control system using PC	
32.	PC based Temperature Control System	
33.	PC Based Motor Speed Monitoring System	
34.	Ethernet based home/industrial automation	
35.	PC based packing control machine for industrial	
	Application	

Guideline for Report Writing: Every student has to submit their project work detail in project report both in hard copy as well as softcopy (preferable in CD media). Project report should be as per guideline given in the following table.

Chapter	Title	Remarks
No.		
-	Front page	Compulsory
-	Certificate	Compulsory
-	Acknowledgement	Compulsory
-	Table Of Content	Compulsory
1.	Brief description of project idea	Compulsory
2.	Literature survey	Optional
3.	Block diagram with description	Compulsory
4.	Circuit diagram with description	Compulsory
5.	Programming flow chart and its programme/coding	Optional
6.	PCB layout	Optional
7.	Implementation, Testing and Results	Compulsory
8.	Conclusion	Compulsory
9.	Future scope of work/ Extension of project idea	Optional
10.	Bibliography/ References	Compulsory
11.	Annexure-I (Datasheets of used components)	Compulsory

Note: Suggested guideline for formatting the project report.

- 1 All pages should have page numbers at center bottom of the page.
- 2 All text should be in Arial/Times New Roman fonts.
 - 2.1 Main Title size should be 16
 - 2.2 Sub Title size should be 14
 - 2.3 General Text size should be 12

5. SUGGESTED SPECIFICATION TABLE WITH WEEKS.

Phase	Phase Title	Working
No.		Weeks
I	Literature Survey, Project Identification	2
I	Design	6
Ш	Implementation	4
IV	Testing and Installation	1
V	Report writing and Presentation	1
	Total	14

6. PROJECT EVALUATION SCHEME:

Evaluation of project should be made as per following guidelines

SR.	EVALUATION	WEIGHTAGE
No.		
Ι	Literature Survey, Project Identification	05%
II	Design	35%
III	Implementation	35%
IV	Testing and Installation	10%
V	Project Report	10%
VI	Presentation	05%
	Total	100%

7. SUGGESTED LEARNING RESOURCES:

- i http://www.electronicshub.org/electronics-projects-ideas/
- ii http://seminarprojects.com/Thread-ece-projects-topics-list-for-final-yearnew-ideas
- iii http://indianengineer.wordpress.com
- iv http://www.slideshare.net/zettanetworks/final-year-engineering-project
- v http://www.elprocus.com/final-year-engineering-projects-for-electronics-andinstrumentation-students/
- vi http://electronicsforu.com/newelectronics/default.asp
- vii http://www.majesticproject.com/
- viii http://anedotech.com
- ix http://www.apexengineeringproject.com
- x http://1000projects.org
- xi http://www.ingenstech.com/projects-lists-2013-14/PLC%20SCADA%20Projects%20-%20INPLC.pdf

8. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. J.T. Patankar I/C HOD, Government Polytechnic, Ahmedabad
- Prof. M. A. Modi Lecturer, Government Polytechnic, Palanpur.

Faculty Members from NITTTR Bhopal