GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Advance Mathematics (Group-2) (Code: 3320003)

Diploma Programmes in which this course is offered	Semester in which offered
Civil Engineering, Ceramic Engineering, Environment Engineering, Mechanical Engineering, Mining Engineering,	Second Semester

1. RATIONALE

The course is classified under Advance Mathematics and students are intended to understand the advance concepts and principles of Mathematics such as calculus, coordinate geometry and Statics. This knowledge is required to understand and solve engineering problems.

2. COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of mathematical skills so that students are able to acquire following competencies:

- Use proper Mathematical tool to understand engineering principles and concepts.
- Apply concepts of calculus or suitable mathematical tool to solve given engineering problems.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme (In Hours)		Total		Examination Scheme				
		Credits (L+T+P) Theory M		y Marks Practical Mark		Marks	Total Marks	
L T	P	С	ESE	PA	ESE	PA		
2 2	0	4	70	30	0	0	100	

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit; ESE -End Semester Examination; PA - Progressive Assessment.

Note: It is the responsibility of the institute heads that marks for **PA of theory** & **ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

GTU/ NITTTR Bhopal/12-13

4. **DETAILED COURSE CONTENTS**

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I Co-ordinate Geometry	1a. Find the distance between two points, use Mid-Point formula for quadrilateral	1.1Point : Distance Formula, Mid-point, Locus of a point
	1b. Find the equation of locus using Distance Formula	1.2Straight Line: Forms of Equation of St Lines: Slope Point Form, Two Point Form, Intercept Form, Parallel and Perpendicular lines
	1c.Find the equation of line using the different forms1d .Find the equation of circle	1.3 Circle : Equation of Circle, Centre and radius form, Tangent and Normal and related problems.
	1e . Find Tangent and Normal to the circle	
Unit– II Function & Limit	2a .Solve the problem using functions2b .Solve the problem of function using the concept of	2.1 Function Concept and Examples2.2 Limit Concept of Limit, Standard Formulae and related Examples.
Unit– III Differentiation	I Limit 3a. Differentiate the various function	3.1Differentiation : Definition, Rules of, Sum, Product, Quotient of Functions, Chain Rule,
& it's Applications	3b . Apply the differentiation to Velocity, Acceleration and Maxima & Minima	Derivative of Implicit functions and Parametric functions, Logarithmic Differentiation. Successive Differentiation up to second order
		3.2 Application: Velocity, Acceleration, Maxima & Minima.
Unit– IV Integration & its application	4a .Integrate the various function4b .Apply the Integration for finding Area and Volume	4.1 Integration : Concept, Integral of Standard Functions, Working Rules of Integration, Integration by Parts, Integration by Substitution Method, Definite Integral and its properties.
<u>ن</u> د		4.2 Application: Area and Volume.
Unit-V Statistics	5a .Measure Central Tendency in given data	5.1 Measures of Central Tendency for Ungrouped and Grouped Data : Mean, Median and Mode
	5b. Measure Dispersion in given data	5.2 Measure of Dispersion for Grouped and Ungrouped data : Standard deviation

GTU/ NITTTR Bhopal/12-13

5. SUGGESTED SPRCIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit No.	Unit Title	Teaching Hours	Distribution of Theory Marks			I arks
			R Level	U Level	A Level	Total
I	Co-ordinate Geometry	5	2	8	4	14
II	Function & Limit	4	3	5	4	12
III	Differentiation & its Application	8	4	8	6	18
IV	Integration & its Application	8	4	8	4	16
V	Statistics	3	2	5	3	10
Total		28	15	34	21	70

Legends: R = Remember; U= Understand; A= Application and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES (During tutorial hours)

The exercises should be properly designed and implemented with an attempt to develop different types of mathematical skills so that students are able to acquire above mentioned competencies.

S. No.	Unit	Exercises/Tutorial		
	No.			
1	I	Co-ordinate Geometry, Practice Examples		
2	I	Solve engineering problems using coordinate geometry		
3	II	Practice Examples of Function & Limit		
4	II	Use of Various Method/Techniques.		
5	III	Differentiation and Related Examples		
6	III	Solve problems related to various methods/techniques of differentiations		
7	III	Identify the Engineering Applications from respective branches and solve the		
		problems		
8	IV	Integration & Related Examples.		
9	IV	Solve problems Related to Various Methods/Techniques of integration		
10	IV	dentify the Engineering Applications from respective branches and solve the		
		problems		
11	V	Statistics, Practice Examples		
12	V	Use Excel and solve the problems		

Note: The above Tutor sessions are for guideline only. The remaining Tutorial hours are may be used by teachers appropriately for revision and practice.

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: course/topic based seminars, internet based assignments, teacher guided self learning activities, course/library/internet/lab based Mini-Projects etc. These could be individual or group-based. Some of these may be as below:

- 1. Applications to solve identified Engineering problems and use of Internet.
- 2. Learn graphical sofwares:EXCEL,DPLOT,GRAPH etc.
- 3. Learn MathCAD to use Mathematical Tools and solve the problems of Calculus.
- 4. Learn MATLAB and use it to solve the identified problems.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Author	Title of Books	Publication
1	Anthony croft and others	Engineering Mathematics (third edition)	Pearson Education,2012
2	Pandya N R	Advanced Mathematics for Polytechnic	Macmillan Publishers India Ltd.,2012
3	Deshpande S P	Polytechnic Mathematics	Pune Vidyarthi Gruh Prakashan,1984
4	Prakash D S	Polytechnic Mathematics	S Chand,1985

B. List of Major Equipment/Instrument

- 1. Simple Calculator
- 2. Computer System with Printer, Internet
- 3. LCD Projector

C. List of Software/Learning Websites

- 1. Excel
- 2. DPlot
- 3. Graph
- 4. Math CAD
- 5. MATLAB

You may use other Software like Mathematica and other Graph

Plotting software. Use wikipedia.org, mathworld.wolfram.com Etc...

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE:

Faculty Members from Polytechnics

- Dr. N. R.Pandya, HOD-General Dept., Govt. Polytechnic, Ahmedabad
- **Dr N A Dani**, Lecturer, Govt. Polytechnic, Junagadh.
- Prof. (Smt) R L Wadhwa, Lect Govt Polytechnic, Ahmedabad
- **Prof. H C Suthar**, BPTI,Bhavnagar
- **Prof. P N Joshi**, Govt Polytechnic, Rajkot

Coordinator and Faculty Member From NITTTR Bhopal

- **Dr. P. K. Purohit**, Associate Professor, Dept. of Applied Science
- Dr. Deepak Singh, , Associate Professor, Dept. of Applied Science

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Applied Mechanics (Code: 3300008)

Diploma Programmes in which this course is offered	Semester in which offered
Automobile Engineering, Metallurgy Engineering	First Semester
Civil Engineering, Environment Engineering, Fabrication Technology, Mechanical Engineering, Mechatronics Engineering, Mining Engineering, Transportation Engineering	Second Semester

1. RATIONALE

Applied mechanics, as its name suggests, bridges the gap between physical theory and its application to technology. As such, applied mechanics is used in many fields of engineering, especially mechanical and Metallurgy Engineering. In this context, it is commonly referred to as engineering mechanics. To impart basic knowledge of Engineering Mechanics where in Laws of Physics are applied to Solve Engineering problems, this programme / course will help the student to develop basic know how & awareness of the various laws of physics & it's real life applications in the various fields of engineering

2. LIST OF COMPETENCIES

The course content leading to the achievement of the following competencies;

i. Apply the concepts of force, work and energy to calculate work done, power required & efficiency for various simple machines

3. Teaching and Examination Scheme

	Teach <mark>ing Sch</mark> eme (In Hours)		Total Credits		Exa	mination Sch	eme	
(TII HOUIS	,	(L+T+P)	Theory Marks		Practica	ıl Marks	Total Marks
L	Т	P	C	ESE	PA	ESE	PA	1.70
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. **DETAILED COURSE CONTENT**

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I	1.1Define scope of Engineering	Scalar & Vector Quantities –
	Mechanics	like force, pressure, velocity, acceleration
Introduction	1.2 Classify Scalar & Vector	
	quantity	Static & Dynamic – Kinetics & Kinematics
	1.3Diffrentiate the systems of Units	MKS, CGS & SI units and its conversion
	Cints	along with FPI and Metric System
Unit– II	2.1Understand Co - planer	Force – units, elements,
	Concurrent Force system	Laws/Principles of forces such as Principle of
Coplanar	2.2Compute resultant &	Superposition, Principle of transmissibility
Concurrent	Equilibrium forces for given	Composition & Resolution of Forces
Forces	coplanar concurrent force system	Resultant & Equilbrium forces
		conditions of equilibrium
		Analytical & graphical method for Law of
		Parallelogram, Law of Triangle, Lami's Theorems,
Unit– III	2 1Differentiate Combons	Law of Polygon Principal of Moment Moment Courle application
Omt- 111	3.1Differentiate Co-planar, parallel and non - concurrent	Principal of Moment Moment, Couple, application, properties of couple, conditions of equilibrium
	forces	types of supports, end conditions – Hinge, free end,
Coplanar	3.2Compute resultant &	roller, fix,
Non-	Equilibrium forces for given	types of loads like point load, U.D.L, U.V.L, Couple,
Concurrent	coplanar concurrent force	Analytical method to Evaluate reactions in statically
Forces	system	determinate beam subjected to point load and/ or U.D.L
	3.3 Calculate Support reactions	by analytical method of solving Statically determinate
	of the given simply supported	beams to
	beam	
Unit – IV	4.1Distinguish between Centroid	First moment of area; to find Centroid –standard shapes
	and Centre of Gravity	of I, L, Channel & T sections, axis of symmetry
Centroid &	4.2Compute Centroid & centre	First moment of mass; to find C.G of standard solids
Centre of	of gravity in different shape and	sections, Axis of symmetry
Gravity	lamina	
Unit – V	5.1Appreciate Friction and its	Friction , Laws of Friction, Angle of Friction, Angle of
Enjotion	Engineering applications 5.2Calculate coefficient of	Repose, types of friction Application of Lami's theory and theory of resolution of
Friction	5.2Calculate coefficient of friction for different surfaces	Application of Lami's theory and theory of resolution of forces, examples on friction for a block resting on
	metion for different surfaces	horizontal plane & on inclined plane
Unit – VI	6.1Establish relation between	Work – work done, force displacement diagram, torque
	Work, Power Energy	, work done by torque
	6.2Calculate IHP and BHP in	Power – I.H.P and B.H.P of engine ,Equation of H.P in
Work, Power	different conditions	terms of Torque and R.P.M, Engineering Problems
& Energy		Energy – Kinetic & Potential energy and Engineering
#T */ #7##		Problems
Unit – VII	7.1Apply the principle &	principles of machines to evaluate Mechanical
Simple	application of Simple Machines	Advantage, Velocity Ratio of simple machine
Simple Machines	7.2 Compare reversible & irreversible Machines, evaluate	pulley blocks , Draw Line sketch of different systems of Simple and compound levers , Problems, Laws of
1viacillies	the efficiencies of various simple	Machines, reversible & non reversible machines
	machines	machines, reversione & non reversione machines
	111100	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title Teaching			Distribution of Theory Marks				
No.		Hours				Total Marks		
			Level	Level	Level			
1.	Introduction	02	04	00	00	04		
2.	Coplanar Concurrent Forces	10	02	02	06	12		
3.	Coplanar Non-Concurrent Forces	10	02	02	08	12		
4.	Centroid and Centre of Gravity	04	02	02	06	10		
5.	Friction	06	02	04	06	12		
6.	Work, Power & Energy	04	02 02 06 10			10		
7.	Simple Machines	06	02	02	08	12		
	Total	42	16	14	40	70		

Legends:

R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxomonoy

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The exercises/practical/experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the list of exercises/practical/experiments for guidance.

S. No.	Unit No.	Practical Exercise/Experiment		
1	01			
2	02	Verify and calculate resultant force through Law of Parallelogram, Polygon Law of Forces, Lami's Theorem		
3	03	Verify reactions in beam through Graphical & analytical method		
4	04	Calculate Centroid of lamina and Centroid of different sections		
5	05	Calculate Co efficient of Sliding Friction for different surfaces – Wood, Glass		
6	06			
7	07	Work-out M.A & Efficiency of Simple purchase crab, simple wheel and axle, simple screw jack		

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- 7.1 Students will prepare File/journal for the above mentioned Experiments.
- 7.2Students may be given few exercises to calculate resultant/equilibrium force of the force system graphically & analytically verify the results. -unit 2
- 7.3 Student may be asked to collect photographs from internet which is related to field application of various topics.

8. SUGGESTED LEARNING ACTIVITIES

A. List of Books

Sr. No.	Title of Book	Author	Publication
1.	Engineering Mechanics	R S Khurmi	S. Chand, New Delhi
2.	Engineering Mechanics	D S Kumar	S. K. Kataria & Sons,
3.	Engineering Mechanics 7 th edition	Bear & Jonstan	New media
4.	Applied Mechanics	H J Shah & Junarkar	CHAROTAR Publication

B. List of Major Equipment/ Instrument

- 7.4 Apparatus for Law of Parallelogram, Lami's theorem & law of Polygon
- 7.5 Apparatus for determination of coefficient of friction
- 7.6 Apparatus to determine CG of Lamina
- 7.7 Beam apparatus to find reactions
- 7.8 Simple purchase crab, simple wheel and axle, simple screw jack

C. List of Software/Learning Websites

Video Lectures on Applied Mechanics By Prof.SK. Gupta, Department of Applied Mechanics, IIT Delhi

www.tut.fi/.../InstituteofAppliedMechanicsandOptimization/TME-51

ocw.mit.edu > ... > Mechanics of Materials

www.me.ust.hk/.../ME106-applied%20mechanics-lecture%201.pdf

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. B G RAJGOR, HOD, Dept of Applied Mechanics, B & B Institute of Technology
- Prof. J H GABRA, I/C HOD, Dept of Applied Mechanics, G.P, Godhara

Co-ordinator and Faculty Members from NITTTR Bhopal

• Dr. J.P.Tegar, Professor Dept. of Civil and Environmental Engg, NITTTR, Bhopal.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: Material Science and Metallurgy (Code: 3321902)

Diploma Programmes in which this course is offered	Semester in which offered
Mechanical Engineering, Automobile Engineering	Second Semester

1. RATIONALE

Engineering Materials play an important role as the vital tool for solving the problems of material selection and application in the production and manufacturing of equipment/machines, devices, tools, etc. Therefore, an engineering diploma student must be conversant with the properties, composition and behavior of materials from the point of view of reliability and performance of the product.

Subject is concerned with the changes in structure and properties of matter. Many of the processes which are involved to bring out these changes, forms the basis of engineering activities. The study of basic concepts of material science and metallurgy will help the students understanding engineering subjects where the emphasis is laid on the application of these materials.

2. LIST OF COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

- i. Select Engineering materials based on properties, behavior and environmental effect for given engineering application.
- ii. Examine microstructure and alloying elements of given engineering materials

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Cred			Total Credits	Examination Scheme				
	(In Hours)		(L+T+P)	Theory Marks Prac		Practical	Marks	Total Marks
L	T	P	С	ESE	PA	ESE	PA	150
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit;; ESE - End Semester Examination; PA - Progressive Assessment.

Note: It is the responsibility of the institute heads that marks for **PA** of theory & **ESE** and **PA** of **practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. DETAILED COURSE CONTENT

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I Engineering Materials	1a. Explain different types of bonds material, its construction and characteristics	1.1 Types of bonds, construction and characteristics of electrovalent, covalent, coordinate, hydrogen and metallic
	1b.Draw molecular arrangement in solids, liquid and gases 1c. Describe various properties of material 1d. Explain effects of cooling rate, grain size on materials properties	1.2Intermolecular force of attraction 1.3Molecular arrangement in solids, liquid and gases 1.4 Structure of solids i.Concept of crystalline structure. ii.Structure of metal-unit cell, BCC, FCC and HCP. iii.Examples and properties of metallic structures 1.5 Physical, chemical, electrical, electromagnetic and thermal properties of material 1.6Solidification of metals and digital transducers i.Concept. ii.Crystal, grain, grain boundaries and dendritic solidification. iii.Effect of cooling rate on material properties. iv.Effect of grain size on properties of metal
Unit– II Phase Diagrams	Explain the concept of equilibrium diagram Bernard Cooling curves for pure metals and alloys	2.1Equilibrium diagrams. i.Concept, definition and need. ii.Solid solution-definition, properties and examples. iii. Alloys-major elements, reasons to add and important effect on material properties. iv.Cooling curve-concept and method to plot. v.Cooling curve for pure metals and alloys.
	2c. Draw and Interpret TTT curves and Iron carbon diagram	2.2 Time Temperature Transformation curve- (TTT curve). i.Need and application. ii.Steps to construct TTT curve 2.3 Iron carbon equilibrium diagram. i.Concept, need & characteristics. ii.Definition of the terms used. iii. Plotting fundamentals. iv.Interpretation.
	2d. Explain various heat treatment processes	2.4 Heat treatment processes. i.Types of furnaces. ii.Heat treatment processes.(Annealing, normalizing, carburizing, case hardening, hardening, tempering, spherodising, nitriding, tempering, stabilizing, etc.).Methods, parameters and changes in properties. iii.Types of quenching mediums, their properties and applications.

Unit	Major Learning	Topics and Sub-topics				
Unit– III Metallurgical Microscope	3a. Prepare specimens for microscopic examination 3b. Examine specimens using microscope	3.1 Metallographic examination and microstructures- need and importance 3.2 Principle & working of metallurgical microscope 3.3 Preparation of specimen for microscopic examinations				
Unit– IV Metals And Its Alloys	 4a. Identify various ferrous metals and alloys based on composition and properties for prescribed application 4b. Test material for alloying elements content 4c. Interpret material designations 	 4.1 Classification of metals. 4.2 Flow diagram for the production of iron and steel. 4.3 Ferrous metals Classification. Steels-types, composition, properties, applications. (for Plain carbon steel, alloy steel including stainless steel and cast iron.) Designation and coding methods according to BIS for plain & alloy steel and cast iron. Designation and coding (as per BIS, ASME, EN, DIN, JIS) of plain & alloy steel and cast iron. V. Microstructure of mostly used ferrous materials-low carbon steel, alloy steel, cast iron. 				
Unit– V Non Metallic Materials	4d. Select various nonferrous metals and alloys based on composition and properties for given application 5a. Identify non-metallic material by judgment and lay-man tests 5b. Select the non metallic material for given simple machine elements	 4.4Non ferrous metals i Classification. ii.Types, composition, properties and applications. (for Copper, copper alloys, Aluminum and Aluminum alloys.) iii.Designation and coding methods according to BIS. iv.Designation and coding (as per BIS, ASME, EN, DIN,JIS)of mostly used non ferrous materials. v.Microstructure of mostly used non ferrous materials-(Copper, Brass, Gunmetal, Aluminum). 5.1 Introduction and classification of non metallic materials. 5.2 Classification of Polymers on basis of Thermal behavior (Thermoplastics & Thermosetting). 5.3 Properties and applications of polymers (like Polyethylene, Polypropylene, Polyvinyl chloride, Teflon, Polystyrene, Phenol formaldehyde, Acrylonitrile, Epoxy resin.) 5.4 Surface coating methods, setup, working parameters and applications using polymers. 5.5 Composites. i. Introduction of composite. ii.Characteristics of composites. iii.Constituents of composites. iii.Constituents of composites. iv.Types and applications of composites. 5.6 Other non metallic materials-types, properties and applications.(like rubber, ceramics, refectories , 				

Course Code: 3321902

Unit	Major Learning Outcomes	Topics and Sub-topics				
		insulators, abrasives, adhesives, etc). 5.7 Designation and coding of important non metallic materials as per BIS.				
Unit- VI	6a.Select proper	6.1 Introduction				
Electrolysis	electrolyte for specified application. 6b.Select proper electrolysis process for surface coating.	 6.2 Electrolytes and Non-electrolytes. i. Types of electrolytes. ii. Construction and working of electrochemical cell. iii. Standard conditions. iv. Standard hydrogen electrodes. v. Electrochemical series, galvanic series. vi. Faraday's Laws of Electrolysis. vii. Industrial applications of electrolysis. viii. Surface coating through electrolysis-setup and working. 6.3 Corrosion-types and reasons. 				
Unit- VII	7a.Select suitable cutting oil for given	7.1 Classification of fluid and powder materials. 7.2 Oils.				
Fluid And Powder Materials.	machining process 7b.Select suitable lubricants. 7c.Interpret designations of oils and paints. 7d.List areas of powder metallurgy applications.	 i. Types and properties. ii. Designation methods as per BIS. iii. Applications in Mechanical engineering. 7.3Paints and varnishes. i. Definition and classifications. ii. Surface preparation and coating methods using paints and varnishes. 7.4Powder metallurgy. i. Basic concept of powder metallurgy and its applications, merits and demerits. ii. Manufacturing process of powder coating-setup, equipment used and working. 				

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.		Hours	R Level	U Level	A Level	Total	
I.	Engineering Materials.	05	4	2	2	8	
II.	Phase diagrams.	10	6	4	8	18	
III.	Metallurgical Microscope	03	3	2	0	5	
IV.	Metals and alloys.	10	6	4	6	16	
V.	Non metallic materials.	06	3	2	4	09	
VI.	Electrolysis.	04	3	0	4	7	
VII.	Fluid and powder materials.	04	3	0	4	7	
	Total	42	28	14	28	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Notes:

- i) This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.
- ii) If midsem test is part of continuous evaluation, unit numbers I, II, III and VII are to be considered. It is also compulsory for student to complete ex.no.1 to 4 to eligible for midsem test.
- iii) Ask the questions from each topic as per marks weightage. Optional questions must be asked from the same topic. That is weightage of compulsory attendance part of questions will be equal to marks allotted to each topic.

6. SUGGESTED LIST OF PRACTICAL/EXERCISES

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the above mentioned

expected	competencies.

S. No.	Unit	Practical/Exercises	Approx		
	No.		Hours.		
			Required		
		a: State the criteria to identify any five (3 metallic and 2 non			
1	I	metallic) materials from the selected set of material	2		
	_	b: List properties of each above identified materials. Also identify	_		
		main alloying elements and reasons to add them.			
2	II	II Analyze content of ferrous/non ferrous material using photo			
		spectrometer. (This may be covered during industrial visit).	2		
		a:Study various heat treatment furnaces.			
3	II	b: Perform hardening process on ferrous material. Measure the	4		
3	11	hardness before and after hardening.	4		
		nardness before and after nardening.			
4	III	Examine the given specimen by use of Metallurgical Microscope.	2		
'	111	Prepare ferrous micro specimens and examine them. Also prepare			
5	IV	report on this. –Four specimens. (One of plain carbon steel, second	8		
3	1 V	of alloy steel, third of heat treated steel and fourth of cast iron.)	0		
	_	Prepare non-ferrous micro specimens and examine them.			
6	IV	Also prepare report on this. – Three specimens.(One of copper,	4		
U	1	second of brass and third of aluminium.)	-		
		Study corrosive materials to identify different types of corrosion of			
7	VI	metals.	2		
		Visit one relevant industry which has specifically heat treatment			
8	ALL	processes facilities and photo spectrometer.	-		
		PROBLEM BASED LEARNING:			
		Group of 4-5 students will identify and collect five machine /			
	4.11	product components which are made from different engineering	2		
9	All	materials and which are also failed in their applications. Students	2		
		will measure and sketch the components (free hand-orthographic			
		views) with dimensions. Students in group will also discuss the			
		reasons of failure and will note down the discussion and outcome.			
10	All	SCHOOL WITHIN SCHOOL:	2		
			_		

S. No.	Unit No.	Practical/Exercises	Approx Hours. Required
		a.Each student will explain at least one diagram (assigned by teacher-may be part of iron-carbon diagram, TTT curve for specific material, etc) to all batch colleagues. b.Each student will share experiences of the student activities he/she has carried out.	

NOTES:

- 1. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.
- 2. Student activities are compulsory and are also required to be performed and noted in logbook.
- 3. Term work report includes term work, objects taken for identification for laboratory work, student activity; parts experimented in acid as student activity and log book along with student activities. Term work report is compulsory part to be submitted at the time of practical ESE.
- 4. Term work report must not include any photocopy/ies, printed manual/pages, lithos, etc. It must be hand written / hand drawn by student only.
- 5. For 20 marks ESE, students are to be assessed for competencies achieved. Students are to be asked to prepare specimens, interpret microstructure-iron-carbon diagram—TTT curves, identify materials, select proper materials, etc.

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

- 7.1 Select any five objects (3 metallic and 2 non metallic) which will be used in laboratory and list the material of selected objects.
- 7.2 Prepare the material list of given tools and commonly used items such as razor blade, knife, scissor, hacksaw blade, carpentry chisel, fix spanner, etc. Also give reason(s) for using such material and discuss your answers with the teacher.
- 7.3 Take dilute acid which is commonly used at our home for cleaning purpose and put one scrap iron piece and one non ferrous metal piece in it for minimum 12 hours. Take out these two pieces by following all safety norms/steps (without touching acid) and observe the changes. Discuss with your teacher.
- 7.4 Group of 3-5 students will visit institute's workshop and will identify at least 5 nonmetallic components for a given machine / assembly. Also list the material of identified machine / assembly components.
- 7.5 List at least three questions individually which you would like to ask for followings:
 - i. Comparison of iron and fiber reinforced plastic.
 - ii. Comparison for strength of wood and cast iron.
 - iii. Annealing-heat treatment process.
 - iv. Materials used for construction of any bike.
 - v. Materials used for construction of any home appliance, like mixer, washing machine, iron, etc.
- 7.6 Any other relevant activity added by teacher including preparing industrial visit report.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Author	Title of Books	Publication/Year	
1.	GBS Narang	Materials science	Khanna Publishers, New Delhi.	
2.	R.K.Rajpoot	Materials science	Laxmi Publication, Dariya ganj, New Delhi.	
3.	R.S.Khurmi, R.S.Sedha	Materials science	S.Chand	
4	D.S.Nutt	Materials science and metallurgy	S.K.Katariya and sons, Delhi.	
5.	V.Raghavan	Materials science and Engineering	EEE Edition, Prentice Hill, New Delhi.	
6.	Sidney Avner	Physical Metallurgy	Tata McGraw-Hill Education (2011).	

B. List of Major Equipment/Instrument

- 1. Metallurgical Microscope.
- 2. Standard specimens.
- 3. Furnaces to perform heat treatment process.
- 4. Sorted/required quenching mediums.
- 5. Hardness tester-to check Rockwell hardness-scales A,B and C.
- 6. Other hardness testers like sceleroscope, etc.
- 7. Polishing machine to prepare specimens with necessary consumables.
- 8. Hand grinder specifically to prepare specimens and for spark testing.
- 9. Other consumables.

C. List of Software/Learning Websites

- 1. http://vimeo.com/32224002
- 2. http://www.substech.com/dokuwiki/doku.php?id=iron-carbon_phase_diagram
- 3. http://www-g.eng.cam.ac.uk/mmg/teaching/typd/
- 4. http://www.ironcarbondiagram.com/
- 5. http://uk.ask.com/web?q=Who+Discovered+Carbon%3F&qsrc=14097&o=41 647924&l=dir
- 6. http://www.youtube.com/watch?v=fHt0bOfj3T0&feature=related
- 7. http://www.youtube.com/watch?v=cN5YH0iEvTo
- 8. http://www.youtube.com/watch?v=m911tVXyFp8
- 9. http://www.youtube.com/watch?v=98lh5Q0M0cg
- 10. http://www.youtube.com/watch?v=KIyGr-1snMY
- 11. http://en.wikipedia.org/wiki/Materials_science
- 12. http://www.studyvilla.com/electrochem.aspx

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnic

- **Prof. Y. R. Joshi**, TPO, B&B Institute of Technology, Vallabhvidyanagar.
- **Prof. D. A. Dave**, Head of Automobile Engineering Department, Sir B.P.I., Bhavnagar.
- Prof. A. M. Talsaniya, Lecturer in Mechanical Engineering, Sir B.P.I., Bhavnagar.
- **Prof. R. B. Dhruv**, Lecturer in Mechanical Engineering, R.C.T.I., Ahmedabad.

Co-ordinator and Faculty Member from NITTTR Bhopal

- **Dr. K.K.Jain**, Professor and Head; Dept. of Mechanical Engg,
- Dr. A.K.Sarathe, Associate Professor; Dept. of Mechanical Engg,

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Mechanical Drafting (Code: 3321901)

Diploma Programmes in which this course is offered	Semester in which offered		
Mechanical Engineering, Mechatronics Engineering	Second Semester		

1. RATIONALE:

The students of mechanical engineering programme are mainly involved in drafting, manufacturing, inspection and planning activities (such as preparing process plans, preparing bill of materials, etc.) at industries. For all such activities, reference document is the drawing of components/assemblies to be manufactured. In this context, it is of utmost priority to prepare, read and interpret these drawings correctly for production of components and assemblies accurately and precisely. The industrial practices of drafting are also important for the students to make them aware of drafting practices, symbols, codes, norms and standards generally used in industries. Development of sketching ability also strengthens effective engineering communication & presentation.

2. COMPETENCIES:

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

- i. Prepare engineering drawings using codes, norms and standards.
- ii. Interpret basic engineering drawings for various planning, inspection and manufacturing activities.

3. TEACHING AND EXAMINATION SCHEME:

Teaching Scheme		Total Credits	Examination Scheme					
(In Hours)		(L+T+P)	Theory Marks		Tarks Practical Marks		Total Marks	
L	L T P		C	ESE	PA	ESE	PA	
2	0	6	8	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit;; ESE - End Semester Examination; PA - Progressive Assessment.

Note: It is the responsibility of the institute heads that marks for **PA of theory** & **ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. DETAILED COURSE CONTENTS:

Unit	Major Learning		Sub-topics
	Outcomes		
Unit – I	1a. Draw isometric and	1.1	First & third angle projection methods
	multi views of an		and positions of six views.
Multi views	object.	1.2	Multi view drawings (all six views)
Representation	1b. Interpret multi		from given isometric drawing / physical
_	views drawings.		object.
		1.3	Missing view drawings from given
			adequate orthographic views.
Unit- II	2a. Draw sectional	2.1	Need of sections.
	view/s of an object.	2.2	Section lines and cutting plane.
Sectional Ortho	2b. Interpret sectional	2.3	Rules for sectioning and section lines.
graphics	views.	2.4	Types of sections- full, half, revolved,
			removed, partial, off-set, aligned.
		2.5	Sectional view drawings from given
			isometrics drawing / physical object and
			cutting plane conditions.
Unit- III	3a. Draw sectional	3.1	Types and dimensional specifications of
1	views of different		solids (prism, pyramid, cylinder, cone).
Projections	solids.	3.2	Projections of solids - in various
and Sections of	3b. Interpret sectional		positions with respect to the reference
Solids	views of different	1	planes. (Parallel, perpendicular
	solids.	- 41	and inclined to HP and / or VP.)
		3.3	Sectional views of different solids in
		,, ,	given various positions.
		3.4	True shape of section.
Unit- IV	4a. Draw intersectional		Importance and field use.
	view/s of an object.	4.2	Intersection curve for Intersection /
Intersection and	٠, ١		penetration of:
Penetration of Solids			i. Prism into prism.
and Surfaces			ii. Cylinder into cylinder.
	6		iii. Cylinder into prism.
	03		iv. Cone into cylinder.
Unit- V	5a. Develop the surface	5.1	Importance of development of
	requirement of		surfaces.
Development of	given application.	5.2	Drawing of development of surfaces of
Surfaces			prism, pyramid, cylinder and cone –
			independent, sectioned and
			combination.
Unit- VI	6a. Use & Interpret	6.1	Machining symbol and its
	drafting symbols.		interpretation.
Drafting Symbols		6.2	Geometrical symbols and its
			interpretation.
		6.3	Other drafting symbols like threading,
			dowels, pins, ribs, bearings, etc.
		6.4	Notes in drawing like heat treatment
			conditions, surface conditions, assembly
			notes, etc. (All symbols as per BIS).
Unit- VII	7a. Draw & interpret	7.1	Weld symbols as per BIS-813 / ASME
	weld joints, piping		(primary symbols & supplementary
Welded Joints,	layout and duct		symbols).
Piping & Duct	drawings.		Weld nomenclature.
Layouts	7b. Interpret Process	7.3	Weld dimensions.

	flow diagram &	7.4 Welding drawing interpretations. (like
	piping isometrics	simple heat exchangers, pressure
	piping isometries	vessels, etc.)
		7.5 Pipe-types, standards and designation
		methods.
		7.6 Pipe line symbol as per passing fluid,
		air, gas, water etc.
		7.7 Piping fitting symbols.
		7.8 Pipe line diagram.
		7.9 Interpretation of Process flow diagram
		& piping isometrics & pipe schedule
		chart.
		7.10 Ducts-types and applications.
		7.11 Duct layout.
Unit- VIII	8a. Prepare and	8.1 Importance and difference of these
	interpret detail and	drwaings.
Details & Assembly	assembly drawing.	8.2 Detail drawing from given assembly.
	8b.Workout material	8.3 Assembly drawings from given details.
	requirement from a	8.4 Preparing bill of material (part list).
	given drawing.	
Unit- IX	9a.Use appropriate	9.1 Detachable & permanent fasteners.
	fasteners for given	9.2 Sketches of threads (square, acme,
Fasteners	situations.	knuckle, Internal – external threads,
	b. Draw sketches for	Left hand – right hand threads, Single &
	different types of	multi start threads).
	fasteners.	9.3 Sketches of studs (cap screws, machine
		screws, set screws).
		9.4 Sketches of bolts & nut (hexagonal,
		square).
		9.5 Sketches of rivets (snap, pan,
	* O	countersunk, conical).
	4.7	9.6 Sketches of keys.

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY):

			Distribution of Theory Marks			
Unit	Topic Title	Teaching	R	\mathbf{U}	A	Total
No.		Hours	Level	Level	Level	
I.	Multiviews representation	3	0	0	07	07
II.	Sectional orthographics	3	0	0	07	07
III.	Projections and sections of solids	4	0	0	07	07
IV.	Intersection & penetration of solids &	6	0	5	07	12
(A	surfaces					
V.	Development of surfaces	4	0	0	07	07
VI.	Drafting symbols	2	5	0	00	05
VII.	Welded joints and Piping Layouts	4	2	2	04	08
VIII.	Details & assembly	2	2	0	09	11
IX.	Fasteners	-	4	0	02	06
	Total	28	13	7	50	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Notes:

1. This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

- 2. If midsem test is part of continuous evaluation, unit numbers 1, 2, 3 and 5 are to be considered. It is also compulsory for student to complete ex.no.1 to 5 and 7 to eligible for midsem test.
- **3.** Ask the questions from each topic as per marks weightage. Optional questions must be asked from the same topic. That is weightage of compulsory attendance part of questions will be equal to marks allotted to each topic.

5. SUGGESTED LIST OF PRACTICAL/EXERCISES:

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the above mentioned expected competency. Following is the list of minimum sheets to be drawn.

Sheet	Unit No.	Practical/Exercises	Hours
No. 1	I	a: Given the pictorial view, draw multi viewsTwo problems. b: Select one object, measure it and draw multi views. The selected object has to be approved by Teacher. (Multi views include Elevation, Plan, Rear view, Bottom view, Right hand side view and Left hand side view.	08
2	I	MISSING VIEWS: Given adequate number of minimum views, draw additional view/s as askedThree problems.	04
3	П	a: Given the pictorial view with cutting plane/s, draw the views as asked including sectional view/sTwo problems. b: Select one object, measure it and draw the views as asked including sectional view/s. The selected object has to be approved by Teacher.	06
4	III	PROJECTIONS OF SOLIDS: Draw the projection of solids- 4 problems.(1-Prism, 1-Pyramid, 1-Cylinder and 1-Cone.). (With varied dimensions. Refer Note d.)	06
5	III	SECTIONS OF SOLIDS: Draw the sections of solids. Also draw true shape of each sections-4 problems.(1-Prism,1-Pyramid,1-Cylinder and 1-Cone.)	08

		(With varied dimensions. Refer Note d.)	
6	IV	PENETRATION AND INTERSECTION: Draw the intersection curves- 4 problems.(Prism into prism, Cylinder into cylinder, Cylinder into prism, Cone into cylinder. (With varied dimensions. Refer Note d.)	08
7	V	SURFACE DEVELOPMENT: Draw development of surface of prism, pyramid, cylinder and cone – independent, sectioned and combinationTotal 4 problems. (With varied dimensions. Refer Note d.)	04
8	VII	WELD JOINT ASSEMBLY: Draw the weld joint drawing with weld symbols and nomenclature. Take minimum 3 parts for weld joint assembly.	08
9	VII	PIPING LAYOUT: Prepare piping layout for given application/situation with piping symbols and nomenclature. Also prepare isometric piping layout for the same problem.	08
10	VIII	DETAILS: Draw the details of all parts for the assembly selected and sketched as student activity.	12
11	VIII	ASSEMBLY: Draw the assembly of all parts drawn for Sheet No.8. This includes minimum one sectional view and also the parts list.	12
12	All	PROBLEM BASED LEARNING: Complete the given orthographic views with few missing lines of at least three objects. Also sketch (free hand) isometrics of them.	-
13	All	a: Explain at least one problem for construction and method of drawing in sheet to all batch colleagues. Teacher will assign the problem of particular sheet to be explained to each batch student. b: Each student will assess at least one sheet of other students (May be 5-6 students- to be assigned by teacher) and will note down the mistakes committed by them. Student will also guide the students for correcting the mistakes, if any.	
		Total	84

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

NOTES:

- a: Use both sides of sheet. For example, draw sheet number 2 on backside of sheet number 1.
- b: It is compulsory to perform students' activities.
- c: Submission includes sheets, objects, parts/assembly, drawings got for interpretation, student activities performed and sketch book. (Term work must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written/hand drawn by student only.)
- d: The dimensions of solids-like base dimension/diameter, height, number of sides (for prism and pyramid) must be varied for each student in batch so that each student will have same problem, but with different dimensions.
- e: Ask for 6-8 components assembly only.
- f: Keep "Westernmann Table" (Revised to Indian Standards, New Age International Publishers) during theory and practice periods.
- g: For 40 marks under Practical Marks ESE, students are to be assessed for competencies achieved. Students are to be given data for practical ESE to:
 - i. Prepare drawings.
 - ii. Interpret given drawing/s.
 - iii. Refer and interpret data from data book/codes/standards/ Westernmann Table.

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES:

Following is the list of student activities.

S. No.	Activity	Details of student activity
	No.	
1	1	Solve all problems for sheet number 1 to 7 in sketch book (with dimensions).
2	2	Select two objects. Student will measure and sketch* the same in sketchbook for the reference to draw in sheet. One for MULTIVIEW (Sheet No.1) and another for SECTIONAL VIEWS (Sheet No.3). (*Only freehand isometric sketch with dimensions).
3	3	Select one assembly having minimum 6-8 mechanical related components. Student will measure and sketch the same in sketchbook for the reference to draw details and assembly sheets. This may be in group of 3-4 students. (*Only freehand isometric sketch with dimensions).
4	4	Draw freehand sketches for sheet number 8 to 11 in sketch book.
5	5	Draw various drafting symbols in sketch book. This includes mainly: a: Threading symbols. b: Machining symbols. c: Geometrical symbols d: Welding symbols. e: Piping symbols.
6	6	Get ⁺ minimum one industrial drawing each for following, which are in use by industry: a: Machined component. b: Machined part assembly-6-8 components. c: Welded joint based component /assembly.

		d: Piping layout.
		Interpret above all drawings and write your conclusions in sketchbook.
		+ Get by Industrial visits, internet search, reference book, etc.
7	7	Freehand sketches (in sketch book) of various fasteners assigned by teacher.
8	8	List at least two questions each for following cases. List those questions you would like to ask to know / improve further. a: More than six views. b: Combination of different solids. c: Impact of ability of manual drafting on computer aided drafting. d: Intersection and duct layout. e: Correlation between details drawings and assembly drawings.

8. SUGGESTED LEARNING RESOURCES:

A. List of Books.

S.No.	Title of Books	Author	Publication
1	Engineering Drawing.	N.D.Bhatt.	Charotar Publishing House, Anand.
2	Engineering Drawing.	K.R.Gopalakrishna.	Subhash Publications, Banglore.
3	Engineering Drawing.	P.J.Shah.	S.Chand, New Delhi.
4	Engineering Graphics.	M.B.Shah, B.C.Rana.	Pearsons.
5	Machine Drawing.	P. Sidheswar, P.	Tata-McGraw Hill Publishing
		Kannaiah & VVS	Co.LtdNew Delhi
		Sastry.	
6	Fundamentals of	Warren J. Luzadder	Prentice-hall of India Pvt. Ltd
	Engineering drawing.	٠, ٠	New Delhi
7	Westernmann Table,	Jutz, Scharkus.	New Age International Publishers
	Revised to Indian		
	Standards		

B. List of Major Equipment/Instrument.

- 1. Models and cut sections.
- 2. Various machined parts assemblies.
- 3. Various weld joints.
- 4. Set of various industrial updated drawings being used by industries-.
- 5. Large size drawing equipments and instruments for class room teaching-.
- 6. Half imperial size drawing board.
- 7. T-square or drafter (Drafting Machine).
- 8. Set squires $(45^0 \text{ and } 30^0 60^0)$.
- 9. Protector.
- 10. Drawing instrument box (containing compasses and divider).
- 11. Drawing sheets.

- 12. Drawing pencils.
- 13. Eraser.
- 14. Drawing pins / clips.

C. List of Software/Learning Websites.

- 1. http://mvredp.blogspot.in/2010/04/sections-of-solids-introduction.html
- 2. http://www.youtube.com/watch?v=P5g5omLoDr8
- 3. http://engggraphics.wordpress.com/2012/04/10/an-advance-tamil-new-year-gift/
- 4. http://rgpv-ed.blogspot.in/2009/09/development-of-surfaces.html
- 5. https://sites.google.com/site/middleschooljghs/graphic-communication/geometric-drawing-and-surface-developments
- 6. http://www.techdrawingtools.com/12/11201.htm
- 7. http://www.wermac.org/documents/isometric.html
- 8. http://www.me.metu.edu.tr/courses/me114/Lectures/assembly.htm
- 9. http://metal.brightcookie.com/2_draw/draw_t1/htm/draw1_2_1.htm
- 10. http://www.ductedreversecycleairconditioning.com.au/category/37165122
- 11. http://www.affordablecomfort.org/images/Events/15/Courses/422/Proctor_TAM07.pdf
- 12. http://en.wikipedia.org/wiki/Engineering_drawing
- 13. http://www.sevenhillsh.schools.nsw.edu.au/Graphics_TG201/Orthographic/Drawortho.htm
- 14. www.design-technology.info
- 15. www.studyvilla.com
- 16. www.authorstream.com
- 17. Computer based learning material published by KOROS.

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- 1. **Prof. M. K. Dudharejiya**, Lecturer in Mechanical Engineering, Sir B.P.I., Bhavnagar.
- 2. **Shri A.M.Talsaniya**, Lecturer in Mechanical Engineering, Sir B.P.I., Bhavnagar.
- 3. **Shri P.L.Bhogayata**, Lecturer in Mechanical Engineering, Sir B.P.I., Bhavnagar.

Co-ordinator and Faculty Member from NITTTR Bhopal

Prof. Sharad Pradhan, Associate Professor, Dept. of Mechanical Engineering,

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Basic of Civil Engineering (Code: 3320004)

Diploma Programmes in which this course is offered	Semester in which offered
Electrical Engineering ,Mechanical Engineering, Fabrication Technology	Second Semester

1. RATIONALE:

A mechanical or electrical technician is expected to look after many activities at work place, which may be interdisciplinary, for example if he/she has to mount a heavy machine, he should be able to supervise the preparation of foundation for it, which requires the knowledge of civil engg. Therefore he/she is supposed to be exposed to very basics of civil engineering. This course mainly encompasses the major and general areas of civil engineering, knowledge of which may be required by mechanical and electrical engineers/technicians.

2. COMPETENCIES:

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

• To supervise the simple civil engineering tasks related to own branch's integrated tasks.

3. TEACHING AND EXAMINATION SCHEME:

Teaching Scheme Total Credits			Examination Scheme				
(In Hours)	(L+T+P)	Theory	Theory Marks Practical Marks		Total Marks	
L	T P	C	ESE	PA	ESE	PA	
0	1 2	3	0	0	20	30	50

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P -Practical; C – Credit;; ESE -End Semester Examination; PA - Progressive Assessment.

Note: It is the responsibility of the institute heads that marks for **PA** of theory & **ESE** and **PA** of **practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. **DETAILED COURSE CONTENTS:**

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit –1 CIVIL ENGG. SURVEYING	 1a. Use surveying tools and equipments for field survey, leveling and measurements 1b. Calculate different levels and angles 1c. Understand given contour map 	 1.1 Surveying & leveling (its importance and types) 1.2 Necessity for leveling 1.3 Principals of surveying 1.4 Instrument/ tools used for survey and level 1.5 Various methods of finding the field survey measurements 1.6 Chain and Compass Survey 1.7 Preparations of contour sheets/ plan using survey data. 1.8 Procedure of leveling
Unit – 2 CIVIL ENGG. DRAWING	2a. Read and Interpret the building drawing2b. Plan lay out of a simple building	 2.1 Types of building drawings 2.2 Abbreviation, conventions & symbols in civil drawing 2.3 Building byelaws for planning of residential building and industrial building 2.4 Planning of simple residential and industrial building
UNIT -3 CONSTRUCTION MATERIALS	 3a. Select different types of construction materials as per requirements 3b. Test given construction materials for quality control 3c. Prepare approximate cost estimates 	 3.1 Common construction materials such as cement, Brick, Stone, Timber, Steel and Concrete. 3.2 Properties of each materials & their acceptable standards 3.3 Quality parameters of materials 3.4 Estimations and costing for simple structure (only the material cost)
Unit -4 MACHINE FOUNDATIONS	4a. Assess the typical requirements of foundations for medium sized electrical and Mechanical Machines.	 4.1Criteria for machine foundation 4.2Provisions for foundation design considerations in machine foundations. 4.3Factors to be considered while designing machine foundations such as type of soil 4.4Design foundations for simple machine like lathe, compression press, universal testing machine, electric power hammer etc. BIS CODE of practice for machine foundations I.S 2974 - Part –I& II

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

			Distribution of Theory Marks			
Unit	Unit Title	Tutorial	R	U	A	Total
No.		Hours	Level	Level	Level	
I.	Civil engineering Surveying	04				
II.	Civil engineering drawing	04	NOT APPLICABLE			
III.	Construction materials	02				E
IV.	Machine foundations	04				
	Total	14				

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF PRACTICAL/EXERCISES

The experiments should be properly designed and implemented with an attempt to develop different types of skills so that students are able to acquire above mentioned competency. This is the list of minimum experiments to be performed.

Ex. No.	Unit No.	Practical/Exercises	Approx Hours Required
1	I	Practice for linear measurements through ranging, chaining, taping offsetting, recording field book etc.	04
2	I	Practice for working on prismatic compass, dumpy Levels, for taking measurements and, recording length and angles.	04
3	II	Prepare surveying drawings using surveyed data	04
4	III	Test few construction materials such as cement, brick etc in laboratory	04
5	IV	Visit of industry to observe the machine foundation and study of foundation design	04
6	Ш	Market survey of construction materials and prepare of cost estimation	04
7	IV	Observe and draw machine foundation for some heavy machines.	04
Total			28

7. SUGGESTED LEARNING RESOURCES:

A. List of Books.

Sr.No.	Title of Books	Author
1	Text book on Surveying&leveling	T.P.Kanitkar
2	Text hook on Surveying&leveling	B.C.Punmia
3	Civil Engineering Drawing	Shah Kalel&Patkil
4	Engineering Material	S.C.Rangwala
5	Properties of concrete	A.M.Neville

B.List of Major Equipment/ Instrument.

- 1.Chain (10m, 20m, 30m, etc.)
- 2. Measure Tape, Ranging rods
- 3. Prismatic compass, Surveyor compass
- 4. Dumpy level, Tilting level
- 5. Compressive Testing Machine

C. List of Software/Learning Websites: QE PRO for estimation, Autocad for drawings

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

• **Prof. Bhavesh Modi** Principal ,B V P I T (DS) Umrakh Ta. Bardoli

• Mr. Krishnaraj A. Khatri LCE, BVPIT (DS) Umrakh Ta. Bardoli

• Mrs. A. N. Pamnani LCE, BBIT, VV Nagar

• Mrs. Rina Chokshi LCE, PIET (DS) Limda Vadodara

Co-ordinator and Faculty Members from NITTTR Bhopal

• Dr. J.P.Tegar, ProfessorDept of Civil and Environmental Engg,