GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MANUFACTURING ENGINEERING - II (Code: 3341901)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering, Mechatronics	4 th Semester
Engineering	

1. RATIONALE

Large number of industrial parts has to undergo various machining operations for conversion into finished products. Appropriate selection and usage of machine tool, work holding devices, cutting tools and process parameters plays very crucial role in obtaining good quality product at optimum cost. This course will make student familiar with fundamentals of cutting mechanics, kinematics, constructional features and selection criterion for various basic machine tools and automates with some basic exposure to conventional work holding devices and cutting tools and tool holders used on the same machines.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

Make a part/component as per given specification using appropriate machine tools, work holding devices, cutting tools & tool holders by employing optimum process parameters and safe working procedures.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- **i.** Explain mechanics of cutting.
- ii. Classify and explain working of basic machine tools with kinematics.
- iii. Observe and conclude the effect of varying tool materials, cutting parameters and work piece materials.
- iv. Interpret and select tool and tool holder designation system.
- v. Identify the machine tool and select cutting parameters for given job.
- vi. Make the job as per given manufacturing drawing.

Tea	ching So	cheme	Total Credits		Exa	mination S	cheme	
	(In Hou	rs)	(L+T+P)	Theory	Marks	Practical	Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	4	7	70	30	40	60	200

4. TEACHING AND EXAMINATION SCHEME

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA -Progressive Assessment.

5. COURSE DETAILS

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in cognitive	* •
	domain)	
	1a. Explain mechanics	1.1 Need, scope & importance of
Unit – I	of cutting.	manufacturing processes in industries.
	č	1.2 Need of attitude, knowledge & skill
Introduction		required for shop floor supervisor in
and mechanics		machine tools based industries.
of cutting		1.3 Differentiate between forming and
		generating processes.
		1.4 Mechanics of cutting action,
		orthogonal and oblique cutting.
		(Without derivation).
	1b. Explain the effect of	1.5 Chip formation, types of chips.
	varying cutting	1.6 Forces acting on tool and chip,
	parameters.	methods to compute cutting force using
	Ł	dynamometer.
		1.7 Concept and definition of cutting
		speed, feed and depth of cut.
		1.8 Cutting fluid- basic need, types,
		properties and its applications.
		1.9 Influence of cutting variables on
		surface finish, tool life, economy, and
		mass production.
		1.10Safety precautions in machine tools.
	2a. Explain	2.1 Define and classify basic machine
Unit – II	classification,	tools.
	working principles,	2.2 Movements of tool, job, slides and
Basic machine	construction and	work holding devices during cutting
tools-I	operation of lathe and	operation on various machine tools.
	drilling machines.	2.3 Lathe machine.
		i. Types.
	2b. Describe mechanism	ii. Working principle (using block
	& motion	diagram).
	transmission in lathe	2.4 All geared head stock centre lathe.
	and drilling machines.	i. Constructional features.
		ii. Kinematics-(drive, head stock,
	2c. Explain work holding	feedbox, carriage, cross slide,
	devices for lathe and	top slide, swivel, apron,
	drilling machines.	tailstock,) constructional
		sketch, working, and use.
		iii. Detailed specifications.
		iv. Operations performed.
		v. Work holding devices-
		constructional sketch, working
		and applications. (3 jaw chuck,
		4 jaw chuck, face plate,
		centers).

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in cognitive	
	domain)	vi Lead screw and feed rod
		mechanisms
		vii Thread cutting setting-concept
		methods and simple numerical
		viji Accessories- types
		constructional sketch, working
		and applications
		2.5 Metal removal rate (MRR) – concept
		and method to calculate on lathe.
		2.6 Drilling machine.
		i. Types.
		ii. Working principle (using block
		diagram).
		2.7 Redial drilling machining.
		i. Constructional features.
		ii. Kinematics (drive, spindle
		o speeds, feed mechanism, radial
		movement, etc.) constructional
		sketch, working, and use.
		iii. Detailed specifications.
		iv. Accessories- types,
		constructional sketch, working
		and applications.
		v. Tool holding and setting
		methods.
		vi. Operations performed.
	-6-	constructional sketch, working
	0,	and applications
		2.8 Metal removal rate (MRR) –method to
		calculate on drilling machine.
	3a. Explain	3.1 Milling machine.
Unit – III	classification,	i. Types.
	working principles,	ii. Working principle (using block
Basic machine	construction and	diagram).
tools- II	operation of milling	3.2 Plain horizontal milling machining.
	machine.	i. Constructional features.
		ii. Kinematics (drive, spindle
	3b Describe mechanism	speeds, feed mechanism, table
	& motion	movement, etc.) constructional
	transmission in	sketch, working, and use.
	milling machine.	111. Detailed specifications.
		iv. Operations performed.
	3c. Select appropriate	3.3 Milling cutters-types and applications.
	milling cutter for	3.4 Up milling and down milling- concept,
	required milling	advantages, disadvantages and

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in cognitive	
	domain)	
	operation.	applications.
	3d.Calculate number of	3.5 Indexing-dividing head- constructional
	revolutions of	sketch, working, and use.
	indexing head for	3.6 Simple, differential and compound
	given requirements	indexing methods with simple
	using appropriate	numerical.
	indexing method.	3.7 Work holding devices- constructional
		sketch, working and applications.
		3.8 Metal removal rate (MRR) – concept
		and method to calculate on milling.
	4a. Explain types,	4.1 Shaping machine.
Unit – IV	working principles,	i. Types.
	construction and	ii. Working principle (using block
Basic machine	operations of shaping,	diagram).
tools-III	slotting and planning	in. Constructional features and
	machines.	detailed specifications.
	the December	1v. Quick return mechanisms-
	40. Describe	kinematic sketch, working and
	metion transmission	advantages.
	in shaping, slotting	v. Operations performed.
	and planning	constructional sketch working
	machines	and applications
	indefinites.	4.2. Slotting machine
		i. Types.
	5	ii. Working principle (using block
	0,	diagram).
		iii. Constructional features and
		detailed specifications.
		iv. Operations performed.
		v. Work holding devices-
		constructional sketch, working
		and applications.
		4.3 Planning machine.
		i. Types.
		11. Working principle (using block
		diagram).
		111. Constructional features and
		detailed specifications of
		iv Operations performed
		v. Work holding devices
		constructional sketch working
		and applications.

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in cognitive	
	domain)	
	5a. Select cutting tool	5.1 Various cutting tool materials, their
Unit – V	material for given	compositions and properties.
	work piece material	5.2 Alloying elements in tool materials and
Cutting tools	and machining	their effects.
and tool	operation.	
holders	5b.Describe various	
	effect of alloying	
	elements on tool	
	properties.	
	5c. Interpret carbide	5.3 Carbide inserts:
	insert and tool holder	i. Designation method for turning,
	designation system.	milling and drilling (As per
	5d.Suggest suitable	ISO).
	carbide inserts and	ii. Need.
	tool holder for	iii. Benefits.
	specified operation.	5.4 Tool holders for carbide inserts:
		Designation method for turning ,
		milling and drilling (As per
		ISO).
		11. Need.
		111. Benefits.
		iv. Mounting and replacement
		methods of carbide insert.
	. 0`	5.5 General cutting parameters for various
		Cutting tool materials (noo and Carbida) and work piece materials (low
		carbon steel high carbon steel
	6	stainless steel gunmetal cast iron and
	. 0.1	aluminum)
	5e Explain tool angles	5.6 Cutting tool angles and their functions.
	of cutting tools and	5.7 Various cutting tools (with tool
	their importance.	geometry, nomenclature, tool
	·····	materials, sketch/drawing of each,
		ISO/BIS standards) used for various
		operations on lathe, milling and drilling
		machines.
		i. Single point cutting tool.
		ii. Plain milling cutter.
		iii. Side and face milling cutter.
		iv. Centre drill.
		v. Twist drill.
		5.8 Functions and types of chip breakers.
	5f. Explain factors	5.9 Tool life, tool wear and machinability,
	affecting tool life.	factors affecting them.
		5.10Re-sharpening of cutting tools
		specified at 5.7 above.

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in cognitive	
	domain)	
	6a. Explain	6.1 Capstan and turret lathe:
Unit – VI	classification,	i. Constructional features and
	working principles,	working principle.
Automates	construction and	ii. Functions and applications.
	operation of capstan	iii. Difference between capstan and
	lathe, turret lathe and	turret lathe.
	automats.	iv. Preparation of tool layout.
	6b. Outline the tool	v. Merits and demerits.
	layout for Capstan &	vi. Turret lathe in comparison with
	Turret Lathe	basic centre lathe.
		vii. Work holding devices.
		6.2 Single spindle Automats:
		i. Need.
		ii. Constructional features.
		iii. Working principle and
		applications.
		iv. Collets-constructional features
		and applications.
		6.3 Introduction to multi spindle automates
		and special purpose automates.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R Level	U Level	A Level	Total Marks
Ι	Introduction and mechanics of cutting	06	6	2	2	10
II	Basic machine tools-I	10	3	6	7	16
III	Basic machine tools-II	08	2	6	6	14
IV	Basic machine tools-III	06	2	6	2	10
V	Cutting tools and tool holders	08	2	4	8	14
VI	Automates	04	0	4	2	06
Total		42	15	28	27	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- **a.** If midsem test is part of continuous evaluation, unit numbers I, II (Up to 2.5 only) and III are to be considered.
- **b.** Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr.	Unit	Practical Exercises	
No.	No.	(Outcomes' in Psychomotor Domain)	requir
			ed
		Preparatory Activity:	
		a. For given work piece and tool material; select, set and	
		observe cutting speed, feed and depth of cut on lathe	
		machine. Also define these terms.	
1	т	b. Calculate metal removal rate (MRR) for above case.	06
1	1	c. Identify various cutting tools, its geometry and material	00
		available at workshop. Sketch them.	
		d. Identify various carbide inserts and ISO codification.	
		e. Calculate revolution per minute (RPM) for lathe, milling	
		cutte <mark>r and</mark> drill spindle based on given data.	
		Effect of Varying Cutting Parameters:	
2	T	Demonstrate type of chips, surface finishes and tool life for	02
-	-	varying cutting parameters for same work piece material and tool	02
		material. Tabulate the observations.	
		Effect of Varying Work Piece Materials:	
3		Demonstrate type of chips, surface finishes and tool life for	02
		varying work piece material with same cutting parameters.	02
		Tabulate the observations.	ļ
(5)		Turning Job:	
		Prepare a job on centre lathe as per the given drawing. (Including	
		plain turning, taper turning, knurling, threading, grooving, etc).	
		Student will also prepare report including:	
		a. Drawing of the job.	10
4	11	b. Operation sequences including details of cutting	12
		parameters used.	
		c. Sketch of cutting tools used.	
		d. Specification of machines used.	
		e. Machine settings for threading.	

5	III	 Milling Job: Prepare a job using milling operations including use of indexing head (Excluding gear tooth cutting). Student will also prepare report including: a. Drawing of the job. b. Operation sequences including details of cutting parameters used. c. Sketch of cutting tools used. d. Specification of machines used. e. Machine settings for indexing 	10
6	IV	 Shaping and Drilling Job: Prepare a job having plain and inclined surfaces on shaping machine with minimum two holes as per given drawing. Student will also prepare report including: a. Drawing of the job. b. Operation sequences including details of cutting parameters used. c. Sketch of cutting tools used. d. Specification of machines used. 	10
7	V	 Single Point Cutting Tool: a. Sketch single point cutting tool(SPCT) with nomenclature. b. Grind SPCT as per given geometry. c. Sketch the set up to grind each angle of SPCT. 	04
8	VI	Tool Layout: Prepare a tool lay-out of a given component for capstan and turret lathe.	02
9	ALL	Industrial Visit: Visit A Nearby Machine Shop And Prepare A Two Page Report Comprises Of List Of Machine Tools Including Automates, Its Technical Specification, Machining Parameters For Various Operations Being Performed, Cutting Tools And Work Holding Devices Used, Observation Of Skill And Safety Criteria.	02
10	ALL	Mini Project and Presentation: For a given product (different for each student) prepare complete report in suggested format including selection of raw material type & section, sequence of various manufacturing operations, selection of machine, machining parameters, work holding device, tool holder, etc. For each machining operation. Each student will also present the outcome.	06
Total	Hours		56

Notes:

a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.

- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Mini project and presentation topic/area has to be assigned to the student in the beginning of the term by batch teacher. This has to be assigned individually to each student.
- d. Student activities are compulsory and are also required to be performed and recorded in logbook.
- e. For 40 marks ESE, students are to be assessed for competencies achieved. They should be given following tasks (minimum two):
 - i. Sketch or explain tool geometry for a given cutting tool.
 - ii. Prepare a job on lathe machine. (At least two operations).
 - iii. Prepare a job on shaper and drilling machine. (At least two operations).
 - iv. Prepare a job on milling machine.
 - v. Prepare a tool lay out for a given component for capstan & turret lathe.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

SR.NO.	ACTIVITY.		
	Select two industrial components (approved by teacher) and list various		
1	machine tools and operations used to produce these components. Use one		
	component for mini project and presentation.		
2	Prepare a list of household items which are prepared by machining processes.		
3	Identify and list different cutting tools available in your institute's workshop.		
1	Collect/download at least four different machine tool catalogues including at		
4	least one automate.		
5	Collect/download at least one catalogue each of cutting tool, work holding		
5	device and tool holder.		
6	Identify type of electric motor used in each type of machine tools in your		
	college workshop.		

9. SPECIAL INSTRUCTIONAL STRATEGIES

Sr. No.	Unit	Unit Name	Strategies		
1	Ι	Introduction and	Chart, PPT, Demonstration, Video.		
		mechanics of cutting			
2	II	Basic machine tools-I	Chart, PPT, Demonstration, Video,		
			Industrial/workshop visit, machine tool		
	•		catalogues		
3	III	Basic machine tools-II	Chart, PPT, Demonstration, Video,		
			Industrial/workshop visit, machine tool		
			catalogues		
4	IV	Basic machine tools-III	Chart, PPT, Demonstration, Video,		
			Industrial/workshop visit, machine tool		
			catalogues		
5	V	Cutting tools and tool	Chart, PPT, Demonstration, Video,		
		holders	Industrial/workshop visit, physical tools,		
			cutting tool catalogues		
6	VI	Automates	Chart, PPT, Demonstration, Video,		
			Industrial/workshop visit, work & tool holding		

device catalogues

10. SUGGESTED LEARNING RESOURCES

(A). List of Books:

Sr no.	Title of Books	Author	Publication
1	Workshop Technology I &	J. A. Schey	McGraw-Hill
2	Workshop Technology I & II	Raghuwanshi	Dhanpat Rai and Company(P) Limited
3	Workshop Technology I, II & III	W. A. J. Chapman	Viva books
4	Manufacturing Processes	M. L. Begman	John Wiley and Son
5	Production Technology	R. K. Jain and S. C. Gupta	Khanna Publishers
6	Elements of Workshop Technology Volume No. II Machine Tools	Hajra Choudhary, Bose S. K., Roy Nirjhar	Media promotors and publishers pvt. Limited
7	Manufacturing Processes	S. E. Rusinoff	Times of India Press
8	Production Technology	H. H. Marshall	Pitman
9	Production Technology	НМТ	Tata Mcgraw-Hill Publishing Co.
10	All about machine tools	Gerling	John Wiley & Sons Canada, Limited
11	Manufacturing processes – I	Bava	McGraw-Hill

(B) List of equipments:

i Following machine tools.

- a. Hacksaw.
- b. Lathe with standard and special accessories.
- c. Milling machines-Vertical and Horizontal with standard accessories and indexing/dividing head.
- d. Column drill.
- e. Radial Drill.
- f. Shaper.
- g. Slotting.
- h. Planning.
- i. Tool and cutter grinder.
- j. Automats-turret and capstan.
- ii Required cutting tools-HSS and Carbides.
- iii Required cutting tool holders.

(C) List of Software/Learning Websites:

- i. http://nptel.iitm.ac.in/video.php?subjectId=112105126
- ii. http://nptel.iitm.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Manuf%20P roc%20II/pdf/LM-01.pdf
- iii. http://www.youtube.com/watch?v=H0AyVUfl8-k&list=PLEFE7D1579523C45D
- iv. http://www.youtube.com/watch?v=FFzRIop5bpg&list=PL843C2A830C65E2EE
- v. http://www.youtube.com/watch?v=81Fdif5e85c
- vi. http://www.youtube.com/watch?v=A0dTvf_Q8BA&list=PL2C105C94D2955C8B
- vii. http://www.youtube.com/watch?v=tDc0l9Gm8D4&list=PL3AFB507B668AF162
- viii. http://www.youtube.com/watch?v=THVgkBnjLq0
- ix. http://www.youtube.com/watch?v=6VpCBk7FahI
- x. http://www.youtube.com/watch?v=7wC1u4WOV1o
- xi. http://www.youtube.com/watch?v=VDIoUZuTunI
- xii. http://www.youtube.com/watch?v=fGqc9mZS0YI
- xiii. http://www.youtube.com/watch?v=Mn9jpqI8rao
- xiv. http://www.youtube.com/watch?v=8SuoH5aL1SY
- xv. http://www.youtube.com/watch?v=xxNZSQML_ZA
- xvi. http://www.youtube.com/watch?v=XXUHZxweBcw&list=PLD07DE61CB871A0CB

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics.

- **Prof. M. M. Jikar**, HOD, Mechanical Engineering, N. G. Patel Polytechnic, Bardoli.
- **Prof. J. P. Parmar**, Lecturer in Mechanical Engineering, C. U. Shah Polytechnic, Surendranagar.
- **Prof. R. M. Rajyaguru**, Lecturer in Mechanical Engineering, G. P. Rajkot.
- **Prof. M. K. Patel**, Lecturer in Mechanical Engineering, M. L. Institute of Diploma Studies, Bhandu.

Coordinator and Faculty Members from NITTTR Bhopal.

- **Prof. Sharad K. Pradhan**, Head, Department of Mechanical Engineering.
- Dr. K.K. Jain, Professor and Dean, Department of Mechanical Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: THERMAL ENGINEERING- I (Code: 3341902)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering	4 th Semester

1. RATIONALE

In industry, the mechanical engineers are supposed to operate and maintain thermal equipment. This course will provide the basic knowledge of thermal engineering which will function as foundation in applications in major fields of mechanical engineering and technology notably in steam and nuclear power plants. This course would develop knowledge and skills related to boilers, boiler mountings and accessories, compressors, heat exchangers, steam turbines etc. This course is thus very important for mechanical engineers.

2. COMPETENCY

The course content should be taught with the aim to develop different types of skills so that students are able to acquire following competency:

• Apply basic concepts, laws and principles of thermal engineering to operate and maintain equipment, devices and machines working in mechanical engineering systems.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Determine steam properties and dryness fractions.
- ii. Classify and explain boilers, boiler mountings and accessories.
- iii. Determine boiler performance based on given specific parameters.
- iv. Explain working of steam prime movers.
- v. Identify the elements and processes of steam condensers and cooling towers.
- vi. Operate air compressors and observe the parameters affecting the performance.
- vii. Calculate heat transfer for given heat transfer system.

4. TEACHING AND EXAMINATION SCHEME

	Examination Scheme				Total Credits	Teaching Scheme		
Total Marks	Practical Marks		Marks	(In Hours) (L+T+P) Theory Marks				
	PA	ESE	PA	ESE	С	Р	Т	L
150	30	20	30	70	3	2	0	3

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA -Progressive Assessment

Unit	Major Learning	Topics and Sub-topics
Unit	Outcomes	
	1a. Describe steam	1.1 Concept of two phase system.
Unit – I	formation process and	1.2 Formation of steam, its various
	terminology.	phases, definition and representation
Two phase system		of wet steam, dry steam, saturated
		steam and superheated steam on PV.
		T-s and H-s diagram
		1.3 Concept and determination of dryness
		fraction and degree of superbeat
		1.4 Concept and determination of latent
		1.4 Concept and determination of fatent
		neat, sensible neat, enthalpy, entropy
		and specific volume of steam.
	1h Use steep table and	1.5 Use of Steam tables and Mollier
	ID. Use steam table and Mollier obset for	1.5 Use of Steam tables and Moment
	determination of	1.6 Numerical examples based on
	determination of	1.0 Numerical examples based on
	steam property.	1.7. The utility and a set
	Ic. Determine dryness	1.7 Inrotting process.
	fraction of steam.	1.8 Methods of measurement of steam
	Id. Explain throttling	quality, Calorimeters- Bucket,
	process.	Separating, Throttling and Combined
		calorimeters. (No numerical
		Problems).
	2a. Explain the working	2.1 Steam boiler-concept, definition as
Unit – II	of boilers, mountings	per Indian Boilers Regulation (IBR),
	and accessories.	functions, features and classification.
Boilers, mountings		2.2 Working, merits and demerits of
and accessories	6	following low pressure steam boilers:
	0,1	i. Simple vertical boiler.
		ii. Lancashire boiler.
		iii. Cornish boiler.
		iv. Cochran boiler.
		v. Babcock and Wilcox water
		tube boiler.
		vi. Packaged boiler.
		vii. Waste heat recovery boiler.
		2.3 Boiler mountings and accessories-
		functions, working and location on
		boilers.
		2.4 Boiler draught system-concept and
		classification.
	2b.Determine boiler	2.5 Boiler performance – parameters,
	performance.	evaporative capacity, equivalent
	*	evaporation, efficiency, heat balance
		sheet, simple numerical examples
		based on these.
		2.6 Concept of fluidized bed combustion
		2.6 Concept of fluidized bed combustion

5. COURSE DETAILS

Unit	Major Learning	Topics and Sub-topics
	Outcomes	
		boilers.
		2.7 Maintenance, inspection and safety
		precautions in boiler house (As per
		IBR), check list in boilers.
	3a.Explain principle of	3.1 Concept and classification of prime
Unit – III	working and	movers.
	construction of Steam	3.2 Steam nozzles-types, working and
Steam prime	turbine.	applications. Mass and velocity of
movers	3b.Apply principle of	steam discharge through nozzle (No
	steam nozzles to solve	derivation). Simple examples.
	simple examples.	3.3 Steam turbine – concept and
		classification. Impulse and reaction
		turbines (constructional and materials
		details.)-working and differences.
	3c.Describe	3.4 Compounding of steam turbine:
	compounding of steam	i. Need.
	turbine.	ii. Pressure compounding.
		[iii. Velocity compounding.
		iv. Pressure velocity
		compounding.
	4a.Describe working of	4.1 Elements of a steam condensing
Unit – IV	condensers.	plant, concept, function and
		classification of condensers.
Steam condensers		4.2 Jet condensers and surface
and cooling towers		condensers- constructional sketch,
		working and differences.
	4b.Determine efficiency	4.3 Vacuum efficiency and condenser
	of condensers.	efficiency of condensers- simple
		numerical example.
	4c.Describe working of	4.4 Classification, function and working
	cooling towers.	of cooling towers.
(
TT 1/ TT7	5a.Explain principle,	5.1 Air compressor-concepts, functions,
Unit – IV	construction and	classification and applications.
Air compressors	working of air	5.2 Working of reciprocating air
	compressors.	compressor and rotary air
		compressors.
		5.5 Single stage air compressor and
		inutistage air compressor.
		1. WOIKIIIg.
	5h Calculate nower	II. Inter-coording & and coording.
	requirement and	reciprocating air compressors-single
	volumetric efficiency	and two stages, simple numerical
	of reciprocating air	examples.
	compressor.	5.5 Concept of screw compressors for oil
		free air.

T	Major Learning	Topics and Sub-topics
Unit	Outcomes	
Unit – V Heat transfer	 6a.Explain modes of heat transfer. 6b.Determination of heat transfer through cylinder and wall. 	 6.1 Various modes of heat transfer. 6.2 Conduction heat transfer- Fourier's law- explanation (No Cartesian or other equation derivation), thermal conductivity, heat transfer through a plain wall, composite wall and cylinder. 6.3 Convection heat transfer, Newton's law of convection, Free and force convection, coefficient of convection. 6.4 Radiation heat transfer, Blackbody concept, emissivity, refractivity, absorptivity, Stefan and Boltzmann's law
	6c.Explain types of insulations.	 6.5 Define thermal conductivity. 6.6 Need, types, properties and applications of insulating materials in various industries. 6.7 Difference between hot and cold insulation.
	6d.Calculate overall heat transfer coefficient and LMTD.	 6.8 Over all heat transfer coefficient. 6.9 Simple numerical examples based on above. 6.10Heat exchanger: introduction, types and applications- Logarithmic Mean Temperature Difference (LMTD) concept- (No derivation & no numerical examples).

6. SUGGESTED SPECIFICATIONTABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Unit Title Distribution				of Theory Marks		
		Teaching	R	U	Α	Total		
		Hours	Level	Level	Level	Marks		
Ι	Two phase system	7	2	4	4	10		
II	Boilers, mountings and accessories	10	7	4	4	15		
III	Steam prime-movers	6	4	4	2	10		
IV	Steam condenser & cooling towers	3	2	3	2	07		
V	Air compressors	8	3	6	5	14		
VI	Heat transfer	8	3	4	7	14		
Total		42	21	25	24	70		

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy).

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

a. If midsem test is part of continuous evaluation, unit numbers I, II (UP TO 2.4 ONLY) and VI are to be considered.

b. Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical Exercises		
No.	No.	(Outcomes' in Psychomotor Domain)	required	
1	Ι	 Preparatory Activity: a. List and define thermodynamic properties. b. Tabulate thermodynamic SI units and their conversions. c. Explain thermodynamic processes and their examples. d. Given the data, determine properties of steam using steam table and Mollier chart. 	02	
2	П	Demonstration: (Video/ Movie/Cut Sections /Models may be used in absence of Required Machine/ Equipment/ Device.): a. Steam boilers. b. Boiler mountings and accessories.	04	
3	n	Boiler Performance: Boiler trial- determination of boiler efficiency, equivalent evaporation and Heat balance sheet. (Based on in-house performance or from the data collected during industrial visit.).	04	
4	III	Demonstration: (Video/ Movie/Cut Sections /Models may be used in absence of Required Machine/ Equipment/ Device.): a. Steam prime movers-impulse and reaction turbines. b. Working of nozzles.	02	
5	IV	Demonstration: (Video/ Movie/Cut Sections /Models may be used in absence of Required Machine/ Equipment/ Device.):	02	

	a. Steam condensers.b. Cooling towers.	
V	Performance Test of Air Compressor: Performance test on a reciprocating air compressor and determine its volumetric efficiency.	04
VI	Performance Test of Heat Exchanger: Determine overall heat transfer coefficient and LMTD of heat exchanger.	02
ALL	 Mini Project And Presentation: (In the group of 3-5students- to be assigned in the beginning of the term). a. Identify any one thermal equipment/device/plant (which are included in syllabus) at nearby industry. Sketch the setup, write the specifications, and describe the working of that with process parameters and state applications of that. b. Downloaded photos/ videos, PPTs. Make one CD/DVD for a batch of students. Also prepare a chart or model on given topic. Prepare the seminar. Topics related to syllabus are to be given by teacher. Advancement in the topics areas may also be given. c. Present the seminar at least for 10 minutes for a and b above. This must include photographs / movies of group working on project. 	08
	TOTAL	28
	V VI ALL	a. Steam condensers. b. Cooling towers. Performance Test of Air Compressor: V Performance test on a reciprocating air compressor and determine its volumetric efficiency. Performance Test of Heat Exchanger: VI Determine overall heat transfer coefficient and LMTD of heat exchanger. Mini Project And Presentation: (In the group of 3-5students- to be assigned in the beginning of the term). a. Identify any one thermal equipment/device/plant (which are included in syllabus) at nearby industry. Sketch the setup, write the specifications, and describe the working of that with process parameters and state applications of that. ALL b. Downloaded photos/ videos, PPTs. Make one CD/DVD for a batch of students. Also prepare a chart or model on given topic. Prepare the seminar. Topics related to syllabus are to be given by teacher. Advancement in the topics areas may also be given. c. Present the seminar at least for 10 minutes for a and b above.This must include photographs / movies of group working on project.

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated and signed by teacher.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Term work report content of each experience should also include following.
 - i. Experience set up sketch and specifications of boilers, mountings, accessories, condensers, cooling towers, air compressors, heat exchangers, etc (as applicable).
 - ii. Working for demonstration type experiences.
 - iii. Steps / process description to execute experience for performance type experience.
 - iv. Observation table, calculation and graphs if necessary.
- d. Mini project and presentation topic/area has to be assigned to the student in the beginning of the term by batch teacher. This may be assigned individually or in the group of maximum 3 to 5students.
- e. Student activities are compulsory and to be submitted along with term work.
- e. For ESE, students are to be assessed for competencies achieved through suggested list of activities/ practical. They should be given following tasks:
 - i. Identify the parts of equipment (Air compressor/ boiler/heat exchanger/ condenser).
 - ii. Identify location and function of boiler mountings/ accessories (any two).

- iii. Use of steam table/ Mollier chart, determine properties of steam for given pressure and temperature (two problems).
- iv. Any one performance test (for one set of reading) on heat exchanger/ air compressor/ boiler (determine heat supplied and any one heat loss).

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Sr. No.	Activity			
1	Prepare Mollier charts and show different regions.			
2	Collect/ download product catalogues with specification of various types of energy conservation equipment/ devices and heat exchanger of recent trends.			
3	At least one visit of any power plant/ industry where various items like boiler, air compressor, heat exchanger, cooling tower, condenser etc. can be shown to students.			
4	Identify and list at least 10 equipments/devices which require heat transfer and prevention of heat transfer. Also state mode of heat transfer and methods used to prevent heat transfer.			

9. INSTRUCTIONAL STRATEGIES

Sr. No.	Unit	Unit Title 🌏	Strategies
1	Ι	Two Phase system	Charts, PPTs, demonstration of the process.
2	II	Boilers, mountings	Models, Charts, Videos, PPTs, Industrial
		and accessories	visit.
3	III	Steam prime-movers, condensers and cooling towers	Models, Charts, Videos, Cut sections, Industrial visit.
4	IV	Air compressors	Charts, Videos, PPTs.
5	V	Heat transfer	Charts, Videos, PPTs.

10. SUGGESTED LEARNING RESOURCES

(A) **List of Books:**

Sr.No.	Title of Books	Author	Publication	
1.	Heat Engines	Pandya and Shah	Charotar Publishing House	
2.	Thermodynamics and Heat power	Mathur and Mehta	Tata Mcgraw- Hill	
3.	Heat Engines	D. A. Wrangham	Cambridge University Press	
4.	Heat and mass transfer	D S Kumar	S K Kataria & Sons	
6.	Thermal Engineering	P.L.Ballaney	Khanna.Publishers	
7.	Thermal Engineering	A. S. Sarao	SatyaPrakashan	

8.	Heat and mass transfer	R K Rajput	S. Chand
9.	Basic Boiler Attendant	M MDalchawal	New Popular Prakashan
10.	Thermal Engineering	R K Rajput	Laxmi.Publications
11.	Practical Thermodynamics	G D Rai	Khanna Publisher
12.	A Text book of Thermal Engineering	R S Khurmi& J K Gupta	S Chand & Co.

(B) List of major equipment/materials:

- i. Working non IBR steam boiler of package type.
- ii. Cut section/ models of boilers, boiler mountings and accessories.
- iii. Cut section/ models of steam prime movers.
- iv. Test rigs of condensers and cooling towers.
- v. Test rig of reciprocating air compressor.
- vi. Experimental setup of heat exchanger.
- vii. Independently temperature and pressure measuring instruments.

(C) List of Software/Learning Websites

- i. http://nptel.iitm.ac.in/courses/112101097/
- ii. http://nptel.iitm.ac.in/courses/112106155/
- iii. http://nptel.iitm.ac.in/courses/112101002/ http://www.thermaxindia.com/Large-Industrial-Boilers/Waste-Heat Recovery-Boiler.aspx
- v. http://www.thermaxindia.com/Packaged-Boilers/Shell-Boiler/Oil-Gas-Fired/Shellmax.aspx
- vi. http://www.thermaxindia.com/Large-Industrial-Boilers/solid-fuelsagro-wastes-biomass/Biomass-Fired-Boiler.aspx
- vii. http://www.bhel.com/product_services/range.php?rangeid=146&produ ctid=106&categoryid=141
- viii. http://www.bhel.com/product_services/product.php?categoryid=62&lin k=Power

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics.

- Prof. S. R. Pareek, Head of Department, Mechanical Engineering, Tolani F.
 G. Polytechnic, Adipur.
- **Prof. Patel Ramanbhai Revabhai**, Lecturer in Mechanical Engineering, R. C. Technical Institute, Sola, Ahmedabad.
- Dr. Shah Atul S., Lecturer in Mechanical Engineering, Government Polytechnic Waghai.
- **Prof. M. N. Patel**, Lecturer in Mechanical Engg, Government Polytechnic, Chhotaudepur.

- Prof. Patadiya Virenkumar Natvarlal, Lecturer in Mechanical Engineering, Shree N. M. Gopani Polytechnic Institute, Ranpur.
- Prof. Ms. Prajapati KrutikaVinodchandra, Lecturer in Mechanical Engineering, Parul Institute of Engineering & Technology (Diploma Studies), Limda, Waghodia.

Coordinator and Faculty Members from NITTTR Bhopal

- 1. Dr. Vandana Somkuwar, Associate Professor, Department of Mechanical

rear.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: THEORY OF MACHINES (Code: 3341903)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering,	1 th Somostor
Mechatronics Engineering	4 Semester

1. RATIONALE

In industries, the mechanical engineers/technicians are supposed to manage functioning of equipment with proper planning, operation and maintenance of equipment. Such a functional requirement needs knowledge and skills of various motion and force transforming mechanisms and devices, such as four bar mechanism, belt pulley, clutches, flywheel, etc. This course is included in the curriculum to provide such necessary knowledge and skills in the area of mechanical equipment and devices to help in understanding of kinematics & dynamics of different equipment being used in industry. Thus it is a key course for mechanical engineers/technicians.

2. COMPETENCY

The course content should be taught with the aim to develop different types of skills so that students are able to acquire following competency:

• Use principles of kinematics and dynamics in operation and maintenance of various mechanisms and equipments.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Draw inversions and determine velocity and acceleration of different mechanisms.
- ii. Construct different types of cam profile for a given data.
- iii. Calculate loss of power due to friction in various machine elements.
- iv. Solve problems on power transmission.
- v. Construct turning moment diagram.
- vi. Calculate balancing mass and its position.
- vii. Identify different types of vibration, their causes and remedies.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits		Examination Scheme				
(In Hours)		(L+T+P)	Theory Marks		Practical Marks		Total	
								Marks
L	Т	Р	С	ESE	PA	ESE	PA	
4	0	2	6	70	30	20	30	150

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA -Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning	Topics and Sub-topics
	Outcomes	
	1a. Define link, pairs,	1.1 Theory of machines: introduction, need,
Unit – I	mechanisms,	scope and importance in design and
	inversion, structure	analysis.
Introduction	and machines.	1.2 Kinematics, kinetics and dynamics-
	1b. Explain various	concept and examples.
	terminology	1.3 Basic terminology related to machines
	associated with	and mechanisms.
	theory of machine.	
	1c. Draw inversions of	1.4 Development of different mechanisms
	different mechanisms	and its inversions like four bar chain
		mechanism, slider crank mechanism,
		double slider crank mechanism, etc.
	2a.Draw velocity and	2.1 Basic concept used in solving velocity
Unit – II	acceleration diagram	and acceleration problems.
•	for a given	2.2 Approach to solve velocity and
Velocity and	mechanism.	acceleration related to mechanisms using
acceleration	2b. Calculate velocity and	Relative velocity method for single slider
diagram	acceleration from a	crank mechanism and Four bar chain
4 -1.9-1	given mechanism.	mechanism.
	0	2.3 Klein's construction for single slider
		cranks mechanism.
	3a. Explain different types	3.1 Introduction, functions and types of cams
Unit – III	of cams and cam	and cam followers.
	followers and their	3.2 Types of motions and displacement for
Cam and cam	motions.	different types of cam and cam
profile		followers.
r	3b.Construct different	3.3 Construct different types of cam profiles.
	types of cam profile	
	from given data.	
	4a.Explain laws of	4.1 Concept and laws of friction.
Unit – IV	friction	4.2 Appreciate the role of friction in thrust
	4b. Calculate Power loss	bearing, pivot bearing and collars
Friction	due to friction in	considering - Uniform pressure and
	bearings.	Uniform wear condition.
	4c.Describe the working	4.3 Clutch:
	of different types of	i. Functions.
	clutches, brakes and	ii. Types with sketches and
	dynamometers.	working.
	5	4.4 Brakes:
		i. Functions.
		ii. Types with sketches and
		working.
		4.5 Dynamometers- types and operational
		working principles.

T T 1 /	Major Learning	Topics and Sub-topics
Unit	Outcomes	
	5a.Explain the need and	5.1 Introduction, need and modes of power
Unit – V	modes of power	transmission.
	transmission.	5.2 Types of power transmission.
Power	5b.Solve problems on flat	5.3 Belt drive- types, terminology and
transmission	belt drive.	standards/designation methods as per
		BIS/ISO.
		5.4 Belt speed-co-efficient of friction,
		velocity ratios and slip.
		5.5 Power transmitted by flat belt - tensions,
		centrifugal tensions, maximum tension,
		condition for transmitting maximum
		derivations) numerical examples
		5.6 Merits and demerits of nower
		transmission drives.
	5c.Solve simple	5.7 Gear trains-types, numerical examples
	problems on gear	and applications.
	trains.	
	6a.Construct Turning	6.1 Turning moment diagram:
Unit – VI	moment diagram.	i. Concept.
		ii. Its use for different machines.
Flywheel and		iii. Fluctuations of energy.
governor		6.2 Co-efficient of fluctuation of speed and
		energy.
		6.3 Method to construct turning moment
	Ch Differentiate between	Giagram, numerical examples.
	flywheel and	6.5 Moment of inertia and mass calculation
		of flywheel-numerical examples
	6c Calculate mass of	6.6 Governors: terminology types &
	flywheel.	functions.
	7a.Calculate balancing	7.1 Concepts and types of balancing.
Unit – VI I 🛛 🔼	mass and its position	7.2 Effects of unbalanced masses.
	for masses revolving	7.3 Balancing of revolving masses in same
Balancing and	in same plane.	plane:
vibrations		i. Analytical and graphical
		methods to find balancing mass.
		ii. Numeric examples.
		7.4 Balancing of reciprocating masses. (No
	71.1.1.4.6.1.66.4.4	numerical examples).
	/b.Identify different types	7.5 Vibration:
	of vibration, its causes	i. Terminology.
	and remedies.	iii. Causes
		iv Remedies

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Introduction	08	07	07	00	14
п	Velocity and acceleration	07	02	00	05	07
11	diagram	07				07
III	Cam and cam profile	06	00	00	07	07
IV	Friction	12	02	05	07	14
V	Power transmission	12	00	07	07	14
VI	Flywheel and governor	06	02	05	00	07
VII	Balancing and vibrations	05	05	02	00	07
Total	Total		18	26	26	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- **a.** If midsem test is part of continuous evaluation, unit numbers I, II, III and IV (Up to 4.2 only) are to be considered.
- **b.** Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical Exercises	
No.	No.	(Outcomes' in Psychomotor Domain)	
1	ALL	 Preperatory Activity: a. Interpret and write various course related SI units and their conversions. b. Recall and write scalar and vector quantities. 	02

		c. Demonstrate various mechanisms.	
		Velocity And Acceleration:	
		a. Prepare one sheet on velocity and acceleration diagram for given mechanisms by relative velocity method. This should include minimum four problems	
2	Π	 b. Prepare one sheet on velocity and acceleration diagram for given mechanisms by Klein's construction method. Teacher will assign any one problem from sheet drawn with relative velocity method. (Above at a). c. Prepare report showing necessary calculations for above a 	06
		and b.	
3	III	 Cam Profile: a. Demonstrate working of any type of cam and followers. b. Prepare one sheet on construction of cam profile for given data (without offset). This should include one problem of knife edge follower and another of roller follower. c. Prepare one sheet on construction of cam profile for given data (with offset). This should include one problem of knife edge follower and another of roller follower. d. Prepare report showing necessary calculations for above b and c 	06
		Demonstration of Clutch:	
4	IV	Identify different parts of a single plate disc clutch through disassembly, observe wear and tear due to friction and prepare report based on inspection criteria.	02
		Demonstration Of Power Transmission Systems:	
5	V	 a. Identify various power transmission systems by observing different machines and equipments used in mechanical engineering laboratory/workshop. For example- IC Engine test rig, Compressors, Machine tools, Elevators, etc. Sketch at least four mechanisms with labeling on each. b. Demonstrate working of each. 	02
		Balancing:	
6	VII	Prepare one sheet on balancing using graphical and analytical method	02
		for a given data. Include minimum two problems.	
7	IV,V and VI	 a. Calculate power loss due to friction in bearings from given experimental data. b. Solve two problems of power transmission systems (one of belt drive and another of gear train) from given experimental data. c. Calculate and prepare turning moment diagram from given 	02
		experimental data.	
		d. Calculate mass of flywheel from given experimental data.	
8	ALL	 a. Compile information from internet related to various mechanisms/elements like piston, crank, connecting rod, cam, clutch, brake, flywheel, governor, or animation of mechanism etc. along with functions of each. b. Select any one mechanism (preferably that which is NOT) 	06

 part of syllabus) from mechanical laboratory/workshop/real life. Sketch the same. Take photograph of the same. Also record the movie of its working. c. Prepare subject related mechanism simple model. This has to be proposed by student/s and has to be approved by teacher. d. Present the experience with power point presentation and model prepared at c above. This has to include: i. Compiled information as per a above. ii. Explain the mechanism selected at b above. Use photographs and movie recorded. iii. Explain the working of model prepared at c above. iv. Photographs/movie of students working on project.
Total Hours 28

Notes:

- a. Term work report must not include any photocopies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only. However teacher may allow related photographs/movie for experience number 8.
- b. Term work report content of each experience should also include following.
 - i. Sheets, reports and tutorials.
 - ii. Mini project model, presentation and downloaded content.
 - iii. Student activity.
- c. Mini project and presentation topic/area has to be assigned to the student in the beginning of the term by batch teacher. This may be assigned individually or in the group of maximum 3-5 students.
- d. For 20 marks ESE, students are to be assessed for competencies achieved. They should be given following tasks:
 - i. Problems on velocity and acceleration on mechanism, cam profile power transmission, friction, flywheel and balancing.
 - ii. Sketch of mechanism, cam and follower, clutches, brakes, dynamometer, gear trains, governor.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

SR.NO.	ACTIVITY
1	List the mechanisms which you are using in your day to day life. Sketch any
	three from these.
2.	List the mechanism used in a typical car.
3.	Identify and measure the dimensions of Flywheel used in automobile.
4.	Identify the type of clutches used in different automobiles and also the type of brakes in automobile and bicycle.
5.	Visit the market and collect the data of items which are used in any
	mechanisms. Data includes specifications, cost, applications, etc. Also name
	the mechanism/s in which such item/s is/are used.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

Sr. No.	Unit	Unit Name	Strategies	
1	Ι	Introduction	Model, Education charts & videos, Real life examples. Demonstration of real industrial parts used in different devices, Movies/Animations.	
2	II	Velocity and acceleration diagram	Movies/Animations.	
3	III	Cam and cam profile	Demonstration of cams, Movies/Animations.	
4	IV	Friction	Model, Education charts & videos, Real life examples. Demonstration of real industrial parts used in different devices, Movies/Animations.	
5	V	Power transmission	Demonstration of real industrial parts, Movies/Animations, Models of different power transmission elements	
6	VI	Flywheel and governor	Industrial visit, Animations/movies, Models of different types of governors.	
7	VII	Balancing and vibrations	Industrial visit, Animations/movies.	

10. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No.	Title of Books	Author	Publication
1.	Theory of Machines	Jagdishlal	Metropolitan Book New Delhi, Company, Daryaganj, Delhi.
2.	Theory of Machines	S.S.Ratan	Tata McGraw Hill , New Delhi.
3.	Theory of Machines	Abdulla Shariff	Dhanpatray and sons, New Delhi.
4.	Theory of Machines	Shah & Jadvani	Dhanpatray and sons, New Delhi.
5.	Theory of Machines	A Ghosh and AK Malik	East West Press (Pvt) Ltd., New Delhi.
6.	Theory of Machines	R.S.Khurmi	S.chand, New Delhi.
7.	Theory of Machines	P.L.Bellaney	Khanna publication, NewDelhi.
8	Theory of Machines	Joseph Edward Shigley	McGrawHill.
8	Theory of Machines	Thomas Bevan	CSB Publishers & Distributors

(B) List of Software/Learning Websites:

- i. http://nptel.iitm.ac.in/video.php?subjectId=112104121
- ii. http://www.technologystudent.com/gears1/gears7.htm
- iii. http://kmoddl.library.cornell.edu/model.php?m=20
- iv. http://www3.ul.ie/~kirwanp/whatisacamandfollowersyste.htm
- v. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-Delhi/Kinematics%20of%20Machine/index.htm
- vi. http://elearning.vtu.ac.in/12/enotes/Des_Mac-Ele2/Unit6-RK.pdf
- vii. en.wikipedia.org/.../Canadian_Committee_for_the_Theory_of_Machines...
- viii. global.oup.com/.../theory-of-machines-and-mechanisms-978019537123...
- ix. www.tecquipment.com/Theory_of_Machines.aspx
- x. www.researchgate.net/.../0094-114X_Mechanism_and_Machine_Theory
- xi. www.journals.elsevier.com/mechanism-and-machine-theory/
- xii. journalseek.net/cgi-bin/journalseek/journalsearch.cgi?field=issn...
- xiii. site.iugaza.edu.ps/wp-content/.../IUGAZA%20TOM2012_CH1-2.pdf
- xiv. www.iftomm.org/
- xv. www.wiziq.com/online-tests/44047-mechanical-theory-of-machine
- xvi. www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall07/infoTheory.pdf

(C) List of equipments:

- i. Working Models / wooden/thermocol theoretical models of:
 - a. Kinematic links and pairs.
 - b. Single slider crank.
 - c. Four bar chain.
- ii. Types of cams, followers and cam/follower arrangements.
- iii. Friction bearing- all types.
- iv. Dynamometers all types.
- v. Friction clutches all types.
- vi. Friction brakes all types.
- vii. Rope/belt All types of flat and vee.
- viii. Gear trains all types.(Simple, compound, reverted, epicyclical).
- ix. Balancing machines -Revolving masses, Reciprocating masses.
- x. Steam engine, internal combustion engine.
- xi. Governors all types.
- xii. Vibration -spring and mass model.
- xiii. Any machine having flywheel.

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- **Prof. D. M. Trivedi**. Lecturer in Mechanical Engineering, K.J.Polytechnic , Bharuch.
- **Prof. M. P. Jakhaniya**, Lecturer in Mechanical Engineering, C.U.Shah.Polytechnic Surendranagar.
- **Prof. D. R. Katariya**, Lecturer in Mechanical Engineering, Government Polytechnic, Bhuj.

Coordinator and Faculty Members from NITTTR Bhopal.

- **Prof. Sharad K. Pradhan**, Head, Department of Mechanical Engineering,
- Dr. K.K. Jain, Professor and Dean, Department of Mechanical Engineering,

in a contraction of the second

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: COMPUTER AIDED DESIGN (Code: 3341904)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering	4 th Semester

1. RATIONALE

The students of mechanical engineering programme are mainly involved in modelling, designing, manufacturing, inspection and planning activities (such as preparing design and production drawing, process plans, preparing bill of materials, etc.) in industries. For all such activities, reference document is the modelling and drawing of component/assembly to be manufactured. In this context, it is of utmost importance to prepare, read and interpret these drawings correctly for production of components and assemblies accurately and precisely. The industrial practices of modelling and designing are also important for the students to make them aware of modelling and designing practices, symbols, codes, norms and standards generally used in industries.

This course has been introduced at Diploma level in order to develop the skills in student so that they can generate various modelling and digital production drawings as required by industry using appropriate CAD software.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Develop production drawings and solid models using codes, norms, standards and CAD software.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Select configuration of CAD workstation.
- ii. Select type of modeling technique for given part.
- iii. Design, develop and model the given part using various CAD software like-Creo/Catia /Unigraphics/Solid edge/Inventor/ AutoCAD, etc.
- iv. Prepare solid models & assembly of mechanical parts.

4. TEACHING AND EXAMINATION SCHEME

Tea	ching S	cheme	Total Credits	Examination Scheme					
	(In Hours)		(L+T+P)	Theory Marks Practical Marks		Theory Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA		
2	0	2	4	70	30	20^{*}	30	150	

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA -Progressive Assessment * WITH EXTERNAL EXAMINER.

5. COURSE DETAILS

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in cognitive	
	domain)	
	1a. Appreciate the need	1.1 Computer graphics & its
Unit – I	of CAD and its	terminology.
	application.	1.2 CAD definition, concept & need.
Fundamentals		1.3 CAD process.
of CAD		1.4 Functional areas of CAD.
		1.5 Coordinate systems.
	1b.Perform Geometric	1.6 Geometric transformation-concept
	2D transformation.	and types.
		1.7 2 dimensional (2D) geometric
		transformation- translation, scaling,
		rotation and mirror with numeric
	•. •	examples.
	2a. Describe functions of	2.1 CAD Workstation-types, functions
Unit- II	CAD Workstation, its	and configuration.
	types, and	2.2 Input and output devices (including
CAD	configuration.	voice, gesture, 3 dimensional (3D)
Hardware	2b. Use input/output	printer, etc)-types, configuration and
	CAD devices.	applications.
	3a.Explain types of solid	3.1 Difference between 2D & 3D
Unit – III	modeling.	models.
		3.2 Geometric modeling – concept,
Geometric		types, features and applications.
modeling		3.3 Solid modeling methods like
		Constructive Solid Geometry, Pure
		primitives & Boundary
		Representation
	3h Describe	3.4 Feature base modeling_concept
	characteristics of	illustrative examples
	features based CAD	musuauve examples.
	nackages	

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in cognitive	
	domain)	
	3c.Differentiate graphics	3.5 Parametric & non parametric
	packages used for	modeling-concept, differences and
	modeling	illustration.
	_	
	4a. Use appropriate UCS	4.1 Introduction to AutoCAD-3D
Unit – IV	for the given	features and 2D commands
	situation.	overview.
3D Modeling		4.2 3D primitives-types and defining
using		parameters.
AutoCAD		4.3 User coordinate system (UCS) and
		its options.
	4b. Prepare solid model	4.4 3D draw commands.
	of industrial parts and	4.5 3D modify and editing commands.
	its assembly using	4.6 3D viewing & views generation.
	Auto CAD.	.6.
	4c. Prepare simple	4.7 Surface modeling commands.
	surface model using	
	AutoCAD.	
	5a Prepare solid model	5.1 Introduction to parametric modeling
Unit – V	of industrial parts and	software. (Any one from Creo,
	its assembly using 🏹	Unigraphics, CATIA, Solid Edge,
3D	parametric modeling	Inventor etc).
parametric	software.	5.2 Sketching interfacing overview.
modeling		5.3 3D working plane introductions.
_	•.•	5.4 3D modeling.
		5.5 Assembly modeling.
		5.6 Views generation.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Mark
- 1						S
I	Fundamentals of CAD	4	5	5	0	10
II	CAD Hardware	2	2	3	0	5
III	Geometric modeling	4	2	4	4	10
IV	3D Modeling using	8	1	6	10	20
1 V	AutoCAD	0	+	0	10	20
V	3D parametric modelling	10	5	6	14	25
	TOTAL	28	18	24	28	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- **a.** If midsem test is part of continuous evaluation, unit numbers I, II, III and IV (Up to point number 4.2 only) are to be considered.
- **b.** Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.
- **c.** For theory paper, examiner has to give options of "Select and specify any one software from Creo, Unigraphics, CATIA, Solid Edge, Inventor etc" while asking the questions from Unit V.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S No	Unit	Practical/Exercises	Hrs.	
5.110.	Number	(Outcomes' in Psychomotor Domain)	required	
1	ALL	Prepare a 2D drawing using AutoCAD and 2D parametric sketcher environment.		
2	IV	3DSolid Modeling-I Prepare 3D solid models using AutoCAD (Three mechanical components).	04	
\mathbf{G}_{3}	IV	3D Surface Model Prepare simple surface model using AutoCAD (Two mechanical components).	02	
4	V	3D Solid Modeling-II: Prepare 3D solid model using any one (from Creo, Unigraphics, CATIA, Solid Edge, Inventor etc) parametric software. (Three models that includes base features, Extrude/Protrude/Revolve).	05	

5	V	3D Solid Modeling-III: Prepare 3D solid models using any one (from Creo, Unigraphics, CATIA, Solid Edge, Inventor etc) parametric software. (Four models that includes engineering features).	05
6	V	 Mini Project And Presentation Using Any One (From CREO, Unigraphics, CATIA, Solid Edge, Inventor) Parametric Software. a. Prepare solid models of dismantled parts of an assembly (selected as student activity 1). b. Assemble the parts. c. Get orthographic production drawings of solid models prepared at "a" above. d. Get orthographic production drawings of assembly model prepared at "b" above. e. Prepare the bill of material (BOM). f. Present the project. 	10
Total Ho	urs		28

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only. Printouts of actually modelled parts/assemblies are to be permitted.
- c. Term work report content of each experience should include following.
 - i. Sketches of parts/assemblies.
 - ii. Steps followed with commands, its options with numeric values, position of UCS (in case of AutoCAD), planes selected, etc.iii. Printouts of modelled parts/assemblies.
- d. Mini project and presentation topic/area has to be assigned to the student in the beginning of the term by batch teacher. This may be assigned individually or in the group of maximum 2 to 3 students.
- e. For 80 marks ESE, students are to be assessed for competencies achieved. They should be given following tasks:
 - i. Prepare solid models and assembly using AutoCAD and any one software (Creo, Unigraphics, CATIA, Solid Edge, Inventor etc).

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Sr.	Activity
No.	
	Bring Actual mechanical assembly from industry/real life/scrap shop/garage/etc.
1	(made up of at least 4 to 5 mechanical components), dismantle the same, measure
	dimensions and sketch it to use the same for exercise no.6).
2	Visit design section of different industry and observe various hardware and
2	software, procedure, standards they are following for designing a product.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If any)

Sr.	Unit	Strategies
No.		
1	I & II	a. Explain various configurations for CAD workstation and
		different peripherals.
		b. Demonstrate various Input/output devices and its connections
		and how to use it.
		c. Demonstrate the procedure of loading the CAD software on a
		computer system.
2	III	Bring actual industrial production drawings from nearby industry and
		distribute them among group of students for self study and
		interpretation. Ask students to practice these drawings using CAD
		software.
3	IV &	a. Bring small real components/assemblies like nuts, bolts,
	V	washers, cotter-knuckle joints, couplings, pulleys, shafts, gears,
		tool post, tool holders, etc. in the class.
		b. Demonstrate various features of such components.
		c. Show the steps to create solid models and assemblies of such
		parts/assembly using CAD softwares.
		d. Take the students for industrial visit.

10. SUGGESTED LEARNING RESOURCES

Sr. No	Title of Books	Author	Publication
110.			
1.	Creo 2.0 for designer and engineers	Sham Tickoo	Dreamtech press
2.	Designing with Creo Parametric 2.0	Dr. Michel J Rider	SDC Publications
3.	Pro/Engineer wildfire 5.0 instructor	David S. Kelley	McGraw-hill
4.	Unigraphics for designer & engineers	Sham Tickoo	Dreamtech press
5.	AutoCAD for engineers and Designers	Sham Tickoo	Dreamtech press
6.	Machine design	K.C.Jhon	PHI
7.	Production drawing	K.L.Narayan	New age publication
8.	Fundamental of Geometric	Alex kruleski	Cengage publication
	dimensioning & tolerancing		8-8- F
9.	CAD/CAM & Automation	Farzak haidaree	Nirali
10.	Machine drawing including AutoCAD	Ajeet singh	McGraw-hill

A. List of Books:

B. List of Major Equipment/ Instrument with Broad Specifications:

- i. CAD Workstations.
- ii. Laser printer-A3 size.
- iii. AutoCad.

iv. Latest educational network version of Creo, Unigraphics, CATIA, Solid Edge, Inventor, software (Any one).

C. List of Software/Learning Websites:

- i. https://www.youtube.com/watch?v=WY0YuCkJWdw
- ii. https://www.youtube.com/watch?v=OIYrkF_FId8
- iii. https://www.youtube.com/watch?v=zoMW_usjaJo
- iv. https://www.youtube.com/watch?v=fx6kt9djIpc
- v. https://www.youtube.com/watcAh?v=8wdOIHxICxw
- vi. https://www.youtube.com/watch?v=srnm--IKtl4
- vii. https://www.youtube.com/watch?v=rtjDfZXscrI

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

.JO2

- **Prof. K. H. Patel**, Head of Mechanical Engineering, Dr.S.S.& S. Gandhi College of Engineering and Technology, Surat.
- Prof. A. A. Lohia, Lecturer in Mechanical Engineering, Government Polytechnic, Rajkot.
- **Prof. S. H. Sundrani**, Lecturer in Mechanical Engineering, Government Polytechnic Ahmedabad.
- **Prof. Hitesh J. Yadav**, Lecturer in Mechanical Engineering, RCTI, Ahmedabad.
- Prof. B.D. Parmar, Lecturer in Mechanical Engineering, Government Polytechnic, Porbandar.
- **Prof. J. B. Patel,** Lecturer in Mechanical Engineering, Sir BPI, Bhavnagar.
- Prof. Jignesh M. Patel, Lecturer in Mechanical Engineering, BSP Polytechnic, Kherva.

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. Sharad K. Pradhan**, Head, Department of Mechanical Engineering
- Dr. K.K. Jain, Professor and Dean, Department of Mechanical Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: METROLOGY & INSTRUMENTATION (Code: 3341905)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering,	4 th Semester
Mechatronics Engineering	

1. RATIONALE

The students of Mechanical Engineering branch are basically concerned with manufacturing various machine components in shops as per given drawing. Today the industrial processing and manufacturing techniques have become complex and complicated and their control is very much difficult by human judgment only. Therefore, the exact and precise measurements are the basic need of the industries. This course of Metrology & Instrumentation, therefore, provides required knowledge and skills and creates self confidence in students so that they can work on shop floor independently for accurate and precise measurements and manufacturing.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Select and use appropriate analog and digital measuring and gauging instruments for a given manufacturing situation

3. COURSE OUTCOMEs (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Measure the given mechanical elements and assemblies using linear and angular analog /digital measuring instruments.
- ii. Check geometrical accuracy of given application.
- iii. Explain surface roughness checking instruments.
- iv. Measure and derive important dimensions of various thread forms and gears.
- v. Select and use non destructive testing methods.
- vi. Check the dimensions using the gauges.
- vii. Select and measure variables using appropriate sensors and transducers.

4. **TEACHING AND EXAMINATION SCHEME:**

	cheme	mination S	Total Credits	cheme	ching S	Teac		
Total	Theory Marks Practical Marks		Theory Marks		(L+T+P)	rs)	In Hou	(
Marks								
	PA	ESE	PA	ESE	С	Р	Т	L
200	60	40	30	70	8	4	0	4

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in	
	cognitive domain)	
	1a. Distinguish	1.1 Inspection, quality and quality
Unit – I	between accuracy,	control-definitions and differences.
	precision and	1.2 Define accuracy, precision and error.
Linear and	error.	1.3 Principle of vernier scale and least
angular	1b.Determine least	count.
measurement	count of given	1.4 Surface plates-types, important
	measuring	features, standards/important sizes.
	instrument	applications and precautions in use.
	1c. Select suitable	1.5 Types, constructional sketch, major
	linear measurement	parts and their functions, least count,
	instrument and	measuring methods and measurement
	measure the linear	illustration (for e.g. 12.48mm)of:
	dimension of given	<i>i</i> . Vernier caliper.
	component.	ii. Micrometer.
	1	iii. Telescopic gauge.
	_	iv. Height gauge.
		v. Depth gauge.
	1d. Describe the	1.6 Slip gauge-types, applications, and
	procedure for	wringing method.
	wring the slip	
	gauge and set	
	given dimension.	
	1e.Select suitable	1.7 Sketch, major parts and their
	angular	functions, least count, measuring
	measurement	methods and measurement illustration
	instrument	of:
	1f. Describe the	i. Bevel Protector.
	measurement	ii. Sine bar.
	procedure for the	iii. Angle gauges.
	angular dimension	iv. Angle Dekkor.
	of given	v. Spirit level.
	component.	vi. Clinometers.
U		vii. Auto collimator.
		1.8 Calibration – concept and need.
	2a. Explain working	2.1 Dial indicators/gauge-types,
Unit – II	of dial indicators.	constructional sketch and
		applications.

	Major Learning	Topics and Sub-topics
Unit	Outcomes (in	
	cognitive domain)	
Measurement of	2b.Select the	2.2 Definition, symbol and measuring
geometrical	measuring method	methods of:
tolerances	and describe the	i. Straightness.
	measurement	ii. Flatness.
	procedure for	iii. Squareness.
	geometrical	iv. Parallism.
	tolerance of given	v. Perpendicularity.
	part/assembly.	vi. Roundness.
		vii. Concentricity.
		viii. Cylindricity.
		ix. Run out and ovality.
	3a. Define various	3.1 Terminology used in connection with
Unit – III	terminology used	surface finis <mark>h.</mark>
	for surface	3.2 Comparison methods to inspect
Measurement of	roughness.	surface finish-concept and
surface	3b. Explain working	applications.
roughness	of direct	3.3 Direct instrument measurement
	instrument	methods-types and concepts.
	methods.	3.4 Construction, working and
		applications of Talysurf surface
		roughness tester and Tomlinson
		tester.
	3c. Determine surface	3.5 Centre line average and Root Mean
	roughness of given	Square systems of surface texture
	data.	evaluation-terminology used,
		concept, equations and numerical
	6	examples.
	03	3.6 Indication of various surface
		roughness characteristics with surface
		roughness symbols-interpretation.
	· · · · · · · · · · · · · · · · · · ·	
	4a. Define various	4.1 Types of gears.
Unit – IV	terms used for gear	4.2 Forms of gear teeth-types and
	nomenclature.	concept.
Gear and thread	4b.Use gear tooth	4.3 Gear tooth Terminology.
measurement	vernier to measure	4.4 Sketch, major parts and their
	gear tooth	functions, least count, measuring
	thickness.	methods and measurement illustration
		of gear tooth vernier.
		4.5 Derivation and numerical example to
		measure gear tooth thickness using:
		1 Gear tooth vernier.
		11 Constant chord method.
		111 Base tangent method.
	4c. Explain working	4.6 Gear tooth profile measurement.
	ot profile projector.	

	Major Learning		Topics and Sub-topics
Unit	Outcomes (in		
	cognitive domain)		
	4d. Define various	4.7	Threads-classification, elements,
	terms used for		specifications and forms.
	thread	4.8	Measurement of major and minor
	nomenclature.		diameters.
	4e.Determine best	4.9	Three and two wire method of
	wire size.		measuring effective diameter of
	4f. Use two and three		external thread-concept, terminology
	wire methods to		used, best wire size, derivation of
	determine effective		equation and numerical example.
	diameter of thread.	4.10	Thread micrometer-sketch, method
	4g.Describe method		to use and determination of
	for measuring the		dimension.
	pitch of given	4.11	Pitch measurement methods.
	thread.		
	5a. Select and check	5.1	Limit gauges-classification, sketch
Unit – V	the given		and applications.
	dimension using	5.2	Comparators-concept, types and
Limit gauges,	limit gauge.		applications.
Transducers and 5b. Define static		5.3	Instrumentation-introduction,
sensors	characteristics of	A	performance characteristics.
	instruments.	5.4	Static characteristics of instruments.
	5c. Explain various	5.5	Transducers-concept, classifications,
	transducers and		physical quantities which can be
	sensors.		measured, advantages and
			disadvantages.
		5.6	Electrical transducers-types,
	~7		working principles and applications.
	10		i Linear Variable Differential
-			Transformer (LVDT) type
			pressure gauge.
			ii Resistance type.
			iii Capacitance type.
			iv Inductance type (LVDT).
			v Piezo-electric.
		5.7	Sensors- classification and
			applications.
	6a. Explain various	6.1	Non destructive testing (NDT) -
Unit – VI	non destructive		concept, need and advantages.
	testing methods.	6.2	NDT- important methods, working
Non destructive			with sketch and applications.
testing			

	Major Learning		Topics and Sub-topics
Unit	Outcomes (in		
	cognitive domain)		
	7a. Select and	7.1	Introduction.
Unit – VII	describe the	7.2	Classification, working principle,
	method for using		construction, working, advantages,
Temperature,	appropriate		limitations and applications of
pressure and	temperature		temperature measuring devices:
flow	measuring device		i. Mercury in glass
measurement	to measure		thermometer.
	temperature of		ii. Bimetallic thermometer.
	given hot body.		iii. Resistance thermometer.
			iv. Thermister.
			v. Thermocouple.
			vi. Radiation pyrometers.
			vii. Opt <mark>ic</mark> al pyrometers.
	7b.Select and describe	7.3	Pressure measurement scales.
	the method for	7.4	Types and applications of
	using appropriate		manometers (only list and
	pressure and flow		applications).
	measuring device	7.5	Working principle, construction,
	to measure		working, advantages, limitations and
	pressure/flow.	(10)	applications of pressure measuring
			devices:
		•	1. Bellows type pressure gauge.
			11. Diaphragm type pressure
	. 0		gauge.
			iv Dead weight niston gauge
		76	Concept of transducer based
	. 05	7.0	pressure measuring devices-
			resistance type, capacitance type and
			inductance type.
		7.7	Classification of flow measuring
			devices.
		7.8	Working principle, construction,
			working, advantages, limitations and
			applications of volumetric flow
			measuring devices:
			i. Bellows type.
			ii. Rotating impeller.
			iii. Rotating lobs.
			iv. Nutating Disc.
			v. Reciprocating piston.
		-	vi. Obstruction.
		7.9	working principle, construction,
			working, advantages, limitations and
			applications of velocity measuring

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
		devices: i. Pitot tube. ii. Orifice meter. iii. Rota meter.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Distribution of Theory Marks			arks	
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Linear and angular measurement	10	06	04	04	14
II	Measurement of geometrical tolerances	06	02	02	03	07
III	Measurement of surface roughness	06	02	02	03	07
IV	Gear and Thread measurement	12	04	04	06	14
V	Limit gauges, transducers and sensors	08	02	04	05	11
VI	Non destructive testing	06	02	02	03	07
VII	Temperature, pressure and flow measurement	08	03	03	04	10
Total		56	21	21	28	70

Legends: R = Remembrance; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- **a.** If midsem test is part of continuous evaluation, unit numbers I (Up to 1.6 only), II, III and VII (Up to point number 7.6 only) are to be considered.
- **b.** Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of

certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical Exercises	
No.	No.	(Outcomes' in Psychomotor Domain)	requi
			red
 a. S.I. basic, supplementary and derived units and their conversions. Convert given length, area and vol from one unit to another. (From mm to cm and m, from to inch, from m to yard and foot, from mm² to inch² and versa, mm³ to inch³ and vice-versa ,etc.). b. Convert given degree to radian and vice-versa. c. Various drafting, surface finish and geometrical symbols. d. Define axis, axes, centre, angles, plane, solid angle. 		 Preperatory Activity: a. S.I. basic, supplementary and derived units and their conversions. Convert given length, area and volume from one unit to another. (From mm to cm and m, from mm to inch, from m to yard and foot, from mm² to inch² and vice-versa, mm³ to inch³ and vice-versa ,etc.). b. Convert given degree to radian and vice-versa. c. Various drafting, surface finish and geometrical symbols. d. Define axis, axes, centre, angles, plane, solid angle. 	02
2	I	Linear And Angular Measurement: Each student will select and bring at least such five mechanical components which will have use of instruments specified below. Same are to be approved by teacher. After approval, student will: a. Sketch each component. b. Sketch and label main parts of instruments to be used. c. Calculate least count of the instrument/s to be used. d. Measure and record applicable dimensions of each component using: i. Vernier calliper. ii. Inside micrometer. iii. Outside micrometer. iv. Telescopic gauge. v. Height gauge. vi. Depth gauge. vii. Bevel protector. viii. Clinometers.	14
3	Ι	Sine Bar: Measure angle between two planes with the help of sine bar and slip gauges.	02
4	П	 Straightness: a. Sketch the part and setup, list the instruments used, list the steps followed and record the observations for checking straightness. b. Plot straightness observations on graph paper. 	02
5	5 II Flatness: Sketch the part and setup, list the instruments used, list the step followed and record the observations for checking flatness.		02

6	Π	Squareness, Perpendicularity And Parallity: Sketch the part and setup, list the instruments used, list the steps followed and record the observations for checking following. a. Squareness. b Perpendicularity and Parallity	02
7	II	 Roundness, Cylindricity, Concentricity, Run Out And Ovality: a. Sketch the part and setup, list the instruments used, list the steps followed and record the observations for checking roundness, cylindricity, concentricity, run out and ovality. b. Prepare polar graph for roundness observations. 	02
8	III	 Surface Roughness: a. Tabulate machining processes, and roughness values (Ra , mm),roughness grade number and roughness symbol. b. Demonstrate various surfaces having different roughness values. c. For given component, sketch the component, judge the roughness of surfaces and show surface roughness symbols on applicable surfaces. d. Measure surface roughness value of given machined surface. 	04
9	IV	 Gear Measurement: a. Sketch gear tooth nomenclature. b. Sketch gear tooth vernier and label each part. c. Calculate chordal thickness and height of given gear. d. Determine tooth height. e. Measure and compare chordal thickness of given spurs gear using gear tooth vernier. 	02
10	IV	 Thread Measurement: For given external threaded part: a. Draw nomenclature for ISO screw threads (Internal and external both). b. Explain and derive best wire size. c. Sketch the part and show the dimensions to be measured. d. Sketch the set up and instruments used to measure/derive major diameter, minor diameter and effective diameter using two wire and three wire methods. e. Measure the pitch. f. Use threaded ring gauge. g. Record observations. 	04
G ₁₁	v	 Limit Gauges: a. Demonstrate use of various limit gauges. b. Select appropriate limit gauge for given dimension/part and check the dimension with gauge. c. Record your observations. 	02
12	V	 Demonstration of Transducers and Sensors: a. Demonstrate electrical (LVDT type, resistance type, capacitance type, inductance type and piezo-electric.) transducers and various sensors. b. Sketch each demonstrated transducers and sensors and tabulate specifications, range, resolution and applications of each. 	04

		Non Destructive Testing:	
13 VI		a. Demonstrate ultrasonic testing of NDT.	02
		b. Observe and interpret X ray test of any weld joint.	
		Temperature Measurement:	
		a. Sketch the set up and constructional sketch of thermocouple	
1.4	VII	used to measure temperature.	02
14	VII	b. Measure the temperature of hot body/hot liquid with	02
		thermocouple.	
		c. Record the observation.	
		Pressure Measurement:	
		a. Sketch the set up and constructional sketch of pressure gauge	
15	VII	used to measure pressure.	02
		b. Measure the pressure with pressure gauge.	
		c. Record the observation.	
		Flow Measurement:	
16	VII	a. Sketch the set up and venture meter used to measure flow.	02
10		b. Measure the flow with venture meter.	02
		c. Record the observation.	
		Mini Project and Presentation:	
		a. Select actual mechanical assembly from industry/real	
		life/scrap shop/garage/etc. (made up of at least 4 to 5	
		mechanical components) and get it approved by teacher.	
		b. Measure geometrical tolerances. Sketch setup drawing to	
17	ALL	measure geometrical tolerances. Measure geometrical	06
		tolerances and record the observations.	
		c. Dismantle the assembly, sketch the parts and measure	
		dimensions. Record your observations.	
		d. Present the work including photographs and movies of actual	
		proj <mark>ect wor</mark> k.	
		TOTAL	56

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only. Photographs/movies of group members actually working on mini project should be allowed.
- c. Term work report content of each experience should also include following.
 - i. Reports.
 - ii. Student activities.
- d. Mini project and presentation topic/area has to be assigned to the student in the beginning of the term by batch teacher. This may be assigned individually or in the group of maximum 2 to 3 students.
- e. For 40 marks ESE, students are to be assessed for competencies achieved. They should be given following tasks. (i and any one from ii, iii and iv.)
 - i. Measure the linear/angular dimensions and geometrical tolerances of given part/assembly.
 - ii. Measure tooth thickness using gear tooth vernier.
 - iii. Measure effective diameter of given thread.
 - iv. Explain working of transducers and sensors.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

SR.NO.	ACTIVITY
1	Visit the workshop and identify the machines and arrangements which require
1	geometrical tolerances.
C	Visit any industry / tool room and observe the working of inspection and testing
2	department. Also prepare the report.

9. SPECIAL INSTRUCTIONAL STRATEGIES

Sr.	Unit	Unit Title	Strategies	
No.	No.			
1	Ι	Linear and angular measurement	Demonstrate actual instrument, video movies of measuring methods.	
2	II	Measurement of geometrical tolerances	Show actual assemblies require geometrical tolerance, show measuring methods movies.	
3	III	Measurement of surface roughness	Show various samples of surface textures, videos,	
4	IV	Gear and thread measurement	Demonstrate use of gear tooth vernier, videos. Show various forms of threads, show measuring methods movies	
5	V	Limit gauges, Transducers and Sensors	Demonstrate limit gauges usage. Demonstrate actual transducers and sensors, movies, industrial visits.	
6	VI	Non destructive testing	Videos, PPTs, industrial visits.	
7	VII	Temperature, pressure and flow measurement	Demonstrate actual instruments, movies, industrial visits.	

10. SUGGESTED LEARNING RESOURCES

(A) List of Books:

Sr no.	Title of Books	Author	Publication
	Mechanical measurements	R.K.Rajput	KATSON
	and instrumentation		
2	Metrology and	Tahir	
	Instrumentation		
3	Mechanical Measurement	Sirohi R.S.,	New Age International
		Radha Krishnan H.C.	
4	Practical Engineering	K.W.B.Sdarp	Pitman
	Metrology		
5	Engineering Metrology	R.K.Jain	Khanna Publications.
6	Industrial Instrumentation	Donald A. Eckman	
7	Industrial Instrumentation	S K Singh	Tata McGrawHill
	& Control		

8	Mechanical Measurement	Beckwith & Buck	Narosa publishing
			House
9	Mechanical Measurement	D.S.Kumar	Metropolitan Book
	and Control		Pub.
10	Practical Engineering	K.W.B.Sdarp	Pitman
	Metrology		
11	Mechatronics	W.Bolten	PEARSON
12	Gear Metrology	C.A.Scoks	

(B) List of equipments:

- 1. Surface plate, 500 x 500 mm.
- 2. Vernier calliper, 100 to 200mm, least count 0.01mm.
- 3. Vernier calliper, 100 to 200mm, least count 0.01mm, digital.
- 4. Inside micrometers, least count 0.01mm, 0-25mm, 25-50mm, 50-75mm.
- 5. Outside micrometer, least count 0.01mm, 0-25mm, 25-50mm, 50-75mm.
- 6. Outside micrometer, least count 0.001mm, 0-25mm.
- 7. Telescopic gauge- 10-100mm.
- 8. Height gauge- 300mm with least count 0.01mm.
- 9. Depth gauge- 100 mm with least count 0.01mm.
- 10. Bevel protector with least count 5'.
- 11. Clinometers.
- 12. Slip gauge box-
- 13. Sine bar- 150mm, 200mm.
- 14. Straight edge, 500mm.
- 15. Feeler gauge, radius gauge, thread pitch gauge.
- 16. Dial indicators magnetic stand.
- 17. Dial indicators, least count 0.01mm.
- 18. V blocks.
- 19. Samples of various surface textures and different surface roughness.
- 20. Microprocessor- stylus-probe based surface roughness testing machine.
- 21. Microscope to compare various textures and surface roughness.
- 22. Gear tooth vernier.
- 23. Profile projector.
- 24. Set of best wires to measure thread dimensions.
- 25. Thread micrometers.
- 26. Thread pitch measuring machine.
- 27. Thread
- 28. Set of limit gauges- sorted sizes, plug gauges, thread ring gauges and snap gauges.
- 29. LVDT type, resistance type, capacitance type, inductance type and piezoelectric type transducers.
- 30. Sensors, position, proximate, velocity, force/strain,
- 31. Thermocouple.
- 32. Bourdon pressure gauge.
- 33. Venturimeter.

(C) List of softwares/ learning websites:

- a. http://en.wikipedia.org/wiki/Metrology (metrology).
- b. https://www.youtube.com/watch?v=4hlNi0jdoeQ (vernier).
- c. https://www.youtube.com/watch?v=FNdkYIVJ3Vc(vernier).
- d. https://www.youtube.com/watch?v=O8vMFFYNIfo (micrometer)
- e. https://www.youtube.com/watch?v=h98HPVuWjLA (depth micrometer)
- f. https://www.youtube.com/watch?v=SmXfGan_NXQ (telescopic gauge)
- g. http://www.authorstream.com/Presentation/007sandeepks-1858141-angularmeasurment/ (angular measurement).
- h. http://askguru.net/t-Angular-Measurement-ppt
- i. https://www.youtube.com/watch?v=aBzh6i5fQ70 (surface roughness)
- j. https://www.youtube.com/watch?v=S7SXD6sKQ-I(surface roughness)
- k. https://www.youtube.com/watch?v=eVpoJzLJa0U(surface roughness)
- 1. https://www.youtube.com/watch?v=3Od7vnoMwGg(surface roughness)
- m. https://www.youtube.com/watch?v=XnLiTPGE6pk (three wire thread measurement)
- n. https://www.youtube.com/watch?v=Gdvtw0pTAOs (thread pitch).
- o. https://www.youtube.com/watch?v=qMgXGedDffw (dial indicator)
- p. http://www.authorstream.com/Presentation/donzvasanth-1501139-unit-2linear-angular-measurement/
- q. http://en.wikipedia.org/wiki/List_of_gear_nomenclature#Addendum (gear nomenclature).
- r. https://www.google.co.in/search?q=gear+tooth+vernier+caliper&tbm=isch &tbo=u&source=univ&sa=X&ei=MIuEUsqSOsiKrQeywIFQ&ved=0CCgQ sAQ&biw=1600&bih=804 (gear tooth vernier).
- s. http://www.youtube.com/watch?v=lc4dsNvm2Ks (principle of mech. meas).
- t. http://www.youtube.com/watch?v=nv3GuJArjNU (Transducers).
- u. http://www.youtube.com/watch?v=iMIzApq1CQ0 (pressure measurement).
- v. http://www.youtube.com/watch?v=JKuoQ5FV2c8 (temperature meas.).
- w. http://www.youtube.com/watch?v=GNOI_7ftbQ0(temperature meas.).
- x. http://www.youtube.com/watch?v=7xUdPVpafyI (flow measurement).
- y. http://www.ignou.ac.in/upload/Unit-4-62.pdf (limit gauges).
- z. http://www.scribd.com/doc/55242715/8/Types-of-limit-gauges
- aa. http://www.youtube.com/watch?v=v25PCV_IJCw (sensors)
- bb. http://www.youtube.com/watch?v=QItuf6lNvmI(sensors)
- cc. http://www.youtube.com/watch?v=pOvTyvBqzgM (displacement sensors)
- dd. http://www.youtube.com/watch?v=inLkCOwVgyM (force sensors)
 - ee. http://www.youtube.com/watch?v=jxv0ITAr74A(force sensors)
 - ff. http://www.youtube.com/watch?v=0MP_9n08urA(force sensors)
 - gg. http://www.youtube.com/watch?v=zAddvPHfKnw(force sensors)
 - hh. http://www.youtube.com/watch?v=_fQSMVf3hdM (calibration).
 - ii. http://www.youtube.com/watch?v=HwSxBRaxn_4(calibration).
 - jj. http://www.youtube.com/watch?v=ZymDMUuVuyY (geometrical Tol.)
 - kk. http://www.gobookee.org/measurement-of-geometric-tolerances-inmanufacturing/
 - ll. http://www.me.metu.edu.tr/courses/me410/exp1/410exp1theory.pdf
 - mm. http://www.youtube.com/watch?v=5eaSkU6Ecik (flatness measurement)
 - nn. http://www.youtube.com/watch?v=1tBnpzyhVXU (measuring straightness)

- http://www.youtube.com/watch?v=1JNCe9fwRUw (measuring 00. perpendicularity)
- http://www.youtube.com/watch?v=eJ8a0k8kQIE(Roundness and pp. cylindricity)
- http://www.youtube.com/watch?v=V0R5GVCxBy4 (NDT) qq.

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

Prof. A. M. Talsaniya, Lecturer in Mechanical Engineering, Sir B.P.I., Bhavnagar. •

Coordinator and Faculty Members from NITTTR Bhopal.

- Dr. K.K. Jain, Professor and Dean, Department of Mechanical Engineering.
- a Engi. Prof. C.K. Chugh, Professor, Mechanical Engineering, NITTTR, Bhopal.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PLANT MAINTENANCE AND SAFETY (Code: 3341906)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering,	4 th Semester
Mechatronics Engineering	

1. RATIONALE

Maintenance of equipment in industries is very critical issue to ensure quality and quantity of production. Industries are not able to survive and progress if proper maintenance of equipment is not done. In the absence of proper maintenance, industries are busy in every day fire fighting to repair the breakdowns and manage production in very unsafe manner. This course provides information about wear, corrosion, lubrication, preventive maintenance; decision tree to diagnose faults, important provisions of factory act, alignment of equipment etc. This course also provides basic knowledge and skills regarding maintenance problems, their causes and remedies in industries.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Manage maintenance operations satisfactorily by following safety rules.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- Recognize troubles in mechanical elements.
- Assemble, dismantle and align mechanisms in sequential order.
- Carry out plant maintenance using tri-bology, corrosion and preventive maintenance.

4. **TEACHING AND EXAMINATION SCHEME**

Teaching Scheme		Total Credits		Examination Scheme				
(In Hours)		(L+T+P)	Theory Marks		rks Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	IVIUI KS
3	0	2	5	70	30	20	30	150

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C -Credit; ESE-End Semester Examination; PA -Progressive Assessment

5. COURSE DETAILS

TT .•4	Major Learning	Topics and Sub-topics
Unit	Outcomes	· · ·
	1a. Appreciate the need	1.1 Definition and aim of maintenance
Unit – I	of maintenance in	engineering.
	industry	1.2 Primary and secondary functions and
Fundamentals of	1b. Describe functions of	responsibility of maintenance
maintenance	maintenance	department.
engineering	department	1.3 Types of maintenance.
0 0	L L	1.4 Types and applications of tools used for
		maintenance.
	1a. Calculate service life	1.5 Maintenance cost & its relation with
	of equipment	replacement economy.
		1.6 Service life of equipment.
	2a. Explain causes,	2.1 Wear- types, causes, effects
Unit – II	effects and reduction	2.2 Wear reduction methods
	methods of wear.	
Wear and	2b. Select appropriate	2.3 Lubricants-types and applications.
Corrosion and	lubricants and	2.4 Lubrication methods –General sketch,
their prevention	lubrication method.	working and applications.
_		i. Screw down grease cup.
		ii. Pressure grease gun.
		iii. Splash lubrication.
		iv. Gravity lubrication.
		v. Wick feed lubrication.
		vi. Side feed lubrication.
		vii. Ring lubrication.
	2c. Describe reasons of	2.5 Definition, principle and factors
	corrosion for given	affecting the corrosion.
	case.	2.6 Types of corrosion.
	2d. Explain methods of	2.7 Corrosion prevention methods.
	corrosion prevention.	-
	3a. Develop decision	3.1 Fault tracing-concept and importance.
Unit – III 🔥 🔪	trees to diagnose	3.2 Decision tree-concept, need and
	faults in equipment.	applications.
Fault tracing		3.3 Sequence of fault finding activities,
		show as decision tree.
		3.4 Draw decision tree for problems in
		machine tools, hydraulic, pneumatic,
		automotive, thermal and electrical
		equipments like:
		i. Any one machine tool.
		ii. Pump
		iii. Air compressor.
		iv. Internal Combustion engine.
		v. Boiler.
		vi. Electrical motors.
		3.5 Types of faults in machine tools and

Unit	Major Learning	Topics and Sub-topics
Unit	Outcomes	
		their general causes.
	4a. Carry out periodic	4.1 Periodic inspection-concept and need.
Unit – IV	inspection in	4.2 Degreasing, cleaning and repairing
	mechanical systems.	schemes.
Periodic and	4b. Overhaul of	4.3 Overhauling of mechanical
preventive	mechanical	components.
maintenance	components and	4.4 Overhauling of electrical motor.
	electrical motor.	4.5 Common troubles and remedies of
		Electric motor.
		4.6 Repair complexities and its use.
	4c. Plan preventive	4.7 Definition, need, steps and advantages
	maintenance of	of preventive maintenance.
	major mechanical	4.8 Steps/procedure for periodic and
	systems.	preventive maintenance of:
		i. Machine tools.
		ii. Pumps.
		iii. Air compressors.
		iv. Diesel generating (DG) sets.
		4.9 Program and schedule of preventive
		maintenance of mechanical and
		electrical equipments.
		4.10Advantages of Preventive
		maintenance.
		4.11 Repair cycle-concept and importance.
	5a. Describe different	5.1 Accident - causes, types, results and
Unit – V	types of accidents	control.
	and hazards.	5.2 Mechanical and electrical hazards-
Industrial safety		types, causes and preventive
		steps/procedure.
	5b. Describe salient	5.3 Describe salient points of Factories act
	points of Factories	1948.for health and safety-, wash
	act 1948.for health,	rooms, drinking water layouts, light,
	and safety.	cleanliness, fire, guarding, pressure
	Sc. Describe Fire	vessels, etc.
	fighting aquipment	5.4 Safety colour codes.
	and methods	5.5 File prevention and methods
	and methods.	equipment and methods.
	6a Select appropriate	6.1 Definition of recovery reconditioning
Unit – VI	recovery method for	and retrofitting
	machine elements	6.2 Methods of recovery and their
Recovery.		applications.
reconditioning and		6.3 Selection criteria of recovery methods.

Unit	Major Learning Outcomes	Topics and Sub-topics	
retrofitting6b. Explain reconditioning and retrofitting process.		6.4 Reconditioning - process, features and advantages.6.5 Retrofitting - concept, need and applications.	
Unit – VII Installation	7a. Explain foundation and erection of	7.1 Design and planning of foundation.7.2 Erection and commissioning of equipment	
erection and commissioning of equipments	7b. Prepare test chart of given equipment	7.3 Alignment and testing of equipment.	

6 SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory			neory
		Teaching	50	M	arks	-
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Fundamentals of maintenance engineering	4	3	4	0	7
II	Wear and Corrosion and their prevention.	8	4	4	6	14
III	Fault tracing	6	2	2	6	10
IV	Periodic and preventive maintenance	10	3	3	8	14
V	Industrial safety	5	3	3	3	9
VI	Recovery, reconditioning and retrofitting	5	2	3	4	9
VII	Installation, erection and commissioning of equipments	4	2	3	2	7
Total	0.1	42	19	22	29	70

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- **a.** If mid semester test is part of continuous evaluation, unit numbers I, II, III, and IV (Up to point number 4.6 only) are to be considered.
- **b.** Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical Exercises		
No.	Number	(Outcomes' in Psychomotor Domain)	required	
1	I	Preparatory Activity: Study and demonstrate use of various types of tools. (Fix spanners, box spanners, ring spanners, allen keys, types of pliers, screw drivers, bearing puller, etc.).	02	
2	II	Measurement of Wear: Measure wears of anyone of the following. a. Machine guide ways. b. Shaft –sleeve. c. Piston –cylinder. d. Bearing.	02	
3	Π	Corrosion: Each student will collect corroded component from field and identify the types of corrosion and possible causes. Student will also suggest prevention methods.	02	
4	ш	Fault Tracing and Decision Tree: Develop decision tree for location of fault for any two items from following- a. Internal combustion (IC) engine. b. Boiler. c. Pump. d. Machine tool. e. Air compressor. f. Electric motor.	04	
5	IV	MaintenanceofMechanicalBasedEquipment/Device/Machine.Maintenance of any two from following. Batch may be divided in to two groups and each group may be given one case.a.Head stock.b.Tail stock.c.Feed box.d.Indexing head.g.Internal combustion (IC) engine.h.Pump.(Dismantle of given case, observe rules, follow sequence of dismantling operations, cleaning, inspection, measuring deviations	08	

6	IV	Preventive Maintenance: Prepare a preventive maintenance schedule of any workshop having- air compressors, car washing pumps, tyre changer, lifts, welding machines, and wheel alignment.		
7	v	Safety: Demonstrate use of fire fighting and safety related equipments.	02	
8	VII	Test Chart: Prepare test chart of newly installed or repaired machine tool.	02	
9	ALL	 Mini Project And Presentation: a. Identify mechanical based any one equipment / device / machine at institute level which requires maintenance. b. Prepare general sketch. c. Perform fault tracing and prepare the decision tree. d. Dismantle. Write the sequence of dismantling. Also describe the steps. List the tools used for this activity. e. Attend necessary maintenance tasks. Write the tasks performed. f. Assemble, test and if necessary, modify. Write the steps. g. Prepare power point presentation. Present the project. This must include photographs / movies of group working on project. 	04	
10	ALL	Industrial Visit: Arrange visit to nearby automobile workshop/machine shop.	-	
Total Hours				

Notes:

- a. Term work report must not include any photocopies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only. However photographs/movies of actual performance by batch students and photographs of device/s undertaken for maintenance may be allowed by teacher.
- b. Term work report content of each experience should also include following.
 - i. The specifications of machines / equipments / devices / tools /instruments / items/ elements which is / are used to carry out and to check experience.
 - ii. Sequence of dismantling and assembling.
 - iii. Steps / process description to execute experience.
 - iv. Observations.
- c. Mini project and presentation topic/area has to be assigned to the student in the beginning of the term by batch teacher. This may be assigned individually or in the group of maximum 4 to 6 students.
- e. For 20 marks ESE, students are to be assessed for competencies achieved. They should be given following tasks:

- Identify different tools. i.
- ii.
- Make decision tree for given case. Assemble and dismantle parts of given device. iii.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Sr. No.	Activity
1	Monitor functionality of machine element and try to judge fault in it.
2.	Visit nearby Industry/plant/workshop/hospital and collect samples of
	periodic & preventive maintenance format.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If any)

Sr.	Unit	Unit Name	Strategies
No.			
1	Ι	Fundamentals of maintenance engineering	Demonstrate and explain use of tools.
2	Π	Wear and Corrosion and their prevention	Show worn out parts. Also discuss reasons. Show corroded parts. Also discuss reasons.
3	III	Fault tracing	Show movie. Demonstrate the steps.
4	IV	Periodic and preventive maintenance	Show movie. Demonstrate the steps. Show some sample formats.
5	V	Industrial safety	Demonstrate and explain use of safety equipments. Industrial visit.
6	VI	Recovery, reconditioning and retrofitting	Show movie. Demonstrate the steps. Industrial visit.
7	VII	Installation, erection and commissioning of equipments	Show movie. Demonstrate the steps. Industrial visit.

10. SUGGESTED LEARNING RESOURCES

(A) List of Books:

Sr no.	Title of Books	Author	Publication
	Maintenance Engineering Handbook	Higgins & Morrow	DA Information Services
2.	Maintenance Engineering	H.P.Garg	S. Chand and Company.
3.	Maintenance of Machine Tools	Gilbirg & Morrow	
4.	Pump-hydraulic Compressors	Audels.	McGrew Hill Publication.
5.	Foundation Engineering Handbook	Winterkorn, Hans.	Chapman & Hall London

5.00

6.	Manuals Of Machine Tool And Auto mobile Vehicles	-	-
7.	Corrosion handbook	-	-

(B) List of Software/Learning Websites:

- i. www.mt-online.com
- ii. www.pmxpert.com
- iii. www.nptel.iitm.ac.in
- iv. en.wikipedia.org
- v. webstore.ansi.org/preventive-maintenance
- vi. www.mapcon.com

(C) List of equipments:

- i. Tool kit.
- ii. Fire extinguishers.
- iii. Lubricants.
- iv. Cotton waste.
- v. Kerosene.
- vi. Measuring instruments.

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- Prof. R B Patel, Lecturer in Mechanical Engineering, Govt. Polytechnic, Himatnagar.
- **Prof. A M Patel**, Lecturer in Mechanical Engineering, B.S. Patel Polytechnic, Kherva.
- **Prof. K.P.Patel**, Head of Mechanical Engineering Department, B.S.Patel Polytechnic, Kherva.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Vandana Somkuwar, Associate Professor, Department of Mechanical Engineering,
- **Prof. C.K. Chugh**, Professor, Department of Mechanical Engineering