GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: THERMAL ENGINEERING-II (COURSE CODE: 3351901)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering	5 th Semester

1. RATIONALE.

Subject knowledge of thermal engineering is required in many industries. The objective of this course is to establish basic fundamental and practical knowledge in the field of internal combustion engine, refrigeration, air conditioning, eco-friendly fuels, etc. These are major fields of mechanical engineering. Student will be able to understand different systems and apply its competencies in major fields in related industries. Knowledge of alternate fuels is required as emerging field and today's need of society which will be provided by the course content.

2. LIST OF COMPETENCY.

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

• Apply concepts, laws and principles of thermal engineering to operate & maintain the machines/ equipment/ devices.

3. COURSE OUTCOMES (COs).

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Analyze performance of ICEs by operating them and observing changes in thermodynamic properties during each stroke of ICEs (and by using thermodynamic diagrams.)
- ii. List characteristics and properties of alternate fuels used for ICEs.
- iii. Analyse the performance of Vapour Compression Refrigeration System (VCRS), by operating them and observing the changes in properties of refrigerant during each process on VCRS (and using thermodynamic charts/diagrams.)
- iv. Explain working of various air-conditioning equipments and aids including ducts and fans
- v. Carryout maintenance task by using suitable tools and equipment

4. TEACHING AND EXAMINATION SCHEME.

Teaching S	Schem	ie	Total	Examination Sch		cheme						
(In Hours)	rs)		Credits (L+T+P)	Theory Marks		•		•		Practic Marks	al	Total Marks
L	Т	P	С	ESE	PA	ESE	PA					
2	0	2	4	70	30	20	30	150				

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, **ESE** -End Semester Examination; **PA** - Progressive Assessment.

5. COURSE DETAILS.

T124	Major Lagreina Outages	Том	ing and Cub toning	
Unit	Major Learning Outcomes	Topics and Sub-topics		
	(in cognitive domain)		Co	
	1a. Classify ICEs	1.1	IC Engine-concept (comparison	
Unit – I	1b. Compare ICE with External		with External Combustion	
	Combustion engine- ECE		engine- EC), classification,	
Internal		\	working principle and	
combustion	1c. Explain the working principle	7	terminology used.	
engines.	of the ICEs	1.2	Main components of IC engine	
	1d. Describe ICEs with		and their functions.	
	classification.	1.3	Petrol engines (Spark Ignition-	
	1e. Explain terminology used in		SI) & diesel engines	
	ICEs.		(Compression Ignition-CI)-two	
	1f. Describe working of ICEs		strokes and four strokes both:	
	with functions of each		i) Working principles.	
	element.		ii) Cycles on P-V and T-s	
	1g. Describe combustion process		diagram.	
	in CI & SI engines.		iii) Elements-sketch, working	
	1h. List the steps to perform		and functions.	
. 1	testing of ICEs.		iv) Various systems- cooling,	
			fuel injection (includes	
_ ^ ~			carburetion, fuel pump,	
			fuel injectors, Multi Point	
G			Fuel Injection (MPFI),	
			etc.), ignition, governing	
			(quality, quantity and hit	
			and miss governing),	
			exhaust, etc.	
			v) Comparison between SI &	
			CI Engines. vi) Theoretical and actual	
			,	
		1.4	valve timing diagrams.	
		1.4	MPFI- need and working. Concept of scavenging and	
		1.3	Concept of scavenging and turbocharger.	
			turbocharger.	

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics		
	(in cognitive domain)			
			turbocharger.	
		1.6	Concept of Common Rail	
			Direct Injection System-(CRDI)	
			for diesel engine.	
		1.7	Performance testing of IC	
			engines and its heat balance	
			sheet (Simple numerical	
			examples) with familiarization	
		2.1	with testing as per BIS.	
TT. 24 TT	2a. List characteristics and	2.1	Alternatives fuels: Types,	
Unit– II	properties of fuels used for ICEs.		properties, compositions,	
Alternate	2b. Explain needs and types of		advantages, disadvantages and implementation issues- includes	
fuels.	alternate fuels & their		mainly Compressed Natural Gas	
rucis.	applications.		(CNG), Liquefied Petroleum	
	2c. Explain system requirements		Gas (LPG) and Biodiesel. Effect	
	for alternate fuels with		of these fuels from pollution	
	suitable diagrams.		point of view.	
		2.2	Supply system requirement for	
	~?		CNG and LPG as alternate fuel	
	0		in vehicle.	
		2.3	Conversion devices/ kits for SI	
			Engines- vaporizer/ PRV for	
	. 0		fuel compatibility, piping and	
	3a. Describe the processes and	3.1	allied needs. Introduction to refrigeration.	
Unit– III	elements of VCRS with	3.1	Reversed Carnot cycle & Bell	
	functions of each element.	3.2	column cycle. (No numerical)	
Refrigeration.	3b. Operate VCRSs, observe the	3.3	Unit of refrigeration & basic	
-	changes in properties of		terminology.	
	refrigerant during each	3.4		
	process on VCRS and		cycle (VCRS), working with the	
	calculate / analysis the		help of P-V, T-s & P-h	
	performance using		diagrams.	
	thermodynamic charts/	3.5	VCRS components, types, their	
(4)	diagrams.		construction, working,	
	3c. List characteristics of		applications, (components	
	refrigerants used for VCRSs.		include compressor-	
	3d. Explain thermodynamic cycles based on second law of		Reciprocating, Rotary, Screw and scroll; condensers- Air	
	thermodynamics by using		cooled and water cooled;	
	thermodynamic diagrams.		evaporators- Dx type, flooded,	
	3e. Detect the leakages in VCRS		shell and tube type; expansion	
	by using appropriate tools and		devices -Automatic,	
	equipment.		thermostatic expansion valve	
	3f. Evacuate and recharge the		and capillary tube, High side	
	refrigerant in VCRS.		float valve).	

Unit	Major Learning Outo		Topics and Sub-topics			
	(in cognitive	aomain)				
	3g. Perform various tubing operations.	refrigerant	3.6	Performance of VCRS based on coefficient of performance (COP), simple numerical.		
			3.7	Effect of change in operating conditions (condenser pressure, evaporator pressure, sub cooling, superheating) on performance of VCRS & its representation on P-h diagram (with suitable numerical examples).		
			3.8	Application of VCRS: Ice Plant, cold storage, water cooler, domestic refrigerator, deep freezer- block diagram, components, working.		
			3.9	Basic concept of Vapor absorption refrigeration system.		
		02	3.10	Refrigerant classification, Desirable properties of refrigerants, and properties &		
				applications of commonly used refrigerants including R22, R134a, Hydro Carbon-HC and R717 (Ammonia), need of new		
	X >			refrigerants.		

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
T1 .4 TX7	4a. Plot and interpret various air	4.1 Introduction to air conditioning.
Unit–IV	conditioning processes on psychometric chart.	4.2 Air conditioning- types and its applications.
Air-	4b. Measure various air	4.3 Psychrometry- properties of air.
Conditioning	properties. 4c. Explain working of various	4.4 Representation of psychrometry properties on chart (simple
	air-conditioning equipment.	numerical using chart). 4.5 Various air conditioning
		processes on psychometric charts.
		4.6 Dessert cooler, window and split air conditioners-components and working.
		4.7 Ducts- need, types with applications, constructional materials, and installation,
		common troubles with their remedies.
		4.8 Air conditioning fans-types, constructional features,
	0.0	applications and common troubles with their remedies.
1		: : : : : : : : : : : : : : : : : : :

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY).

Unit	Unit Title	Teachin	Distribution of Theory Marks			
No.	03	g Hours	R	U	A	Total
			Level	Level	Level	Marks
I	Internal Combustion (I. C.)	11	10	8	8	26
	Engines.					
II	Alternate Fuels.	02	4	2	0	6
III	Refrigeration.	10	8	8	8	24
IV	Air-Conditioning.	05	4	4	6	14
	Total	28	26	22	22	70

Legends: R = Remember U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

NOTES:

1. This specification table shall be treated as only general guideline for students and Teachers. The actual distribution of marks in the question paper may vary from above Table.

2. Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

- 3. If midsem test is part of continuous evaluation, unit numbers I (Up to 1.3 only) and III (Up to 3.8 only) are to be considered.
- 4. In the optional numerical question, numerical of same chapter should be asked.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

	Unit	Practical Exercises	Approx.
S. No.	No.	(outcomes in Psychomotor Domain)	Hours.
	110.	**	required
1	ALL	Preparatory Activity: a. Student will recall and write basic thermodynamic units. b. Teacher will demonstrate working of I.C. Engine. i) Demonstrate and explain working and function of I.C. Engine. ii) Demonstrate working of two stroke and four stroke engine.	02
2	I	 Demonstration of IC engine parts: a. Demonstrate and explain dismantling, assembling, working and inspection of fuel pump, fuel injector, carburetor and multipoint fuel injection system. b. Sketch and explain working of fuel pump, fuel injector, carburetor and multipoint fuel injection system. c. List dismantling and assembling methods/ steps in logical sequence. d. Record observations during inspection. 	04
3	Ι	Valve timing diagram: a. Write specifications of IC engine undertaken for valve timing diagram.	02

		b. Perform and record angles and strokes.		
		c. Prepare valve timing diagram.		
		d. Interpret valve timing diagram.		
		Perform test and prepare heat balance sheet of IC		
		Engine. (Petrol and Diesel-both separately); a. Write specifications of IC engine undertaken for		
		test.		
		b. Demonstrate and perform test on IC engine.		
		c. Observe and record test parameters.		
4	I	d. Derive required parameters- Indicated Power (IP),	04	
4	1		04	
		Break Power (BP), fuel consumption for varying		
		load, efficiency, etc.		
		e. Observe and record parameters required for heat		
		balance sheet (For full load conditions). f. Prepare heat balance sheet.		
		1		
		g. Interpret test results and heat balance sheet.		
		Refrigeration tubing operations: a. Demonstrate VCRS on any car/Bus from tubing		
		point of view.		
		b. Demonstrate various tubing tools and tubing		
		operations.		
		c. Perform various tubing operations.		
5	III	d. Sketch and explain VCRS demonstrated on any	02	
		vehicle.		
		e. Sketch and explain various tools used for		
		refrigeration tubing.		
		f. Describe tubing operations with neat sketches. Also		
		state applications of each.		
		Leak detection, evacuation and refilling of the		
		refrigerant:		
		a. Demonstrate leak detection, evacuation and refilling		
		of refrigerant.		
		b. Demonstrate working of equipment / tools /		
	4	instruments / devices used to demonstrate leak		
	TIT	detection, evacuation and refilling of refrigerant.	0.4	
6	III	c. Explain various leak detection techniques.	04	
4		d. Sketch and explain working of equipment / tools /		
		instruments / devices used to demonstrate leak		
		detection, evacuation and refilling of refrigerant.		
V	7	e. List and explain the steps followed to perform leak		
		detection, evacuation and refilling of refrigerant.		
		f. Conclude your observations.		
		COP of VCRS:		
		a. Sketch block diagram of VCRS.		
		b. Write specifications of each component of VCRS		
7	III	taken for performance. (Of compressor, condenser,	02	
,	111	expansion device and evaporator).	52	
		c. Perform, observe and record the parameters required		
		to determine refrigeration effect (RE), work done		
		(WD), mass flow rate and COP.		

		d. Determination RE, WD, mass flow rate and COP.			
		e. Plot the actual VCRS cycle on P-h chart and T-s			
		diagram.			
		f. Interpret the performance.			
		Determination of properties of air:			
		a. List and define various properties of air.			
		b. List, sketch, demonstrate and explain working of			
		various psychometric instruments.			
8	III	c. Perform, observe and record the properties.	02		
0	111	d. Calculate properties (Teacher will assign) of air	02		
		from the readings taken.			
		e. Given the data (Teacher will assign the data for four			
		to five processes.), plot the processes on			
		psychometric chart.			
		Determination of capacity of window / split air-			
		conditioner.			
		a. Sketch block diagram of setup.			
9	III	b. Perform, observe and record the parameters required	02		
		to determine the capacity.			
		c. Determine the capacity.			
		d. Thumb rules to estimate the capacity.			
		Industrial visit: (ANY TWO)			
		a. Visit cold storage plant, ice plant and air-			
		conditioning plant to observe VCRS, different kinds			
		of ducting.			
		b. Visit any Industry working on I C Engine			
10	IV	manufacturing/running or power plant working on	04		
		I C Engine. (D.G. Power Plant.)			
		c. Visit any petrol/ diesel/ CNG/ LPG station and study			
		different fuel filling systems along with different			
		parameters affected.			
m . 1 ==		d. Student will visit and prepare industrial visit report.	20		
Total Ho	ours	_43	28		

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.PA component of practical marks is dependent on continuous and timely evaluation of exercises.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Student activities are compulsory and are part of term work.
- d. Term work content of industrial visit report should also include following.
 - i. Brief details of industry/ site visited.
 - ii. Type, location, processes / products, rough layout, human resource, etc of industry.
 - iii. Details, description and broad specifications of machineries/ processes observed.
 - iv. Safety norms and precautions observed.

- v. Student's own observation on industrial environment, productivity concepts, quality consciousness and quality standards, cost effectiveness, culture and attitude.
- vi. Any other details / observations asked by accompanying faculty.
- e. For practical ESE part, students are to be assessed for competencies achieved. They should be assigned the necessary data and should be given to:
 - i. Any one performance type experience to perform.
 - ii. Identify the locations of parts on VCRS and ICEs and to explain functions of them.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

SR.NO.	ACTIVITY
1	Enlist I C Engine specifications at your institute.
2	Prepare Charts of ICE systems.
3	Prepare chart of CNG/LPG/Diesel/ Petrol engine fuelling system.
4	Search different ICE components from scrap and identify type of defect/failure.
5	Visit any Industry working on I C Engine manufacturing/ running or power plant working on I C Engine.
6	Visit any petrol/ diesel/ CNG/ LPG station and study different fuel filling systems along with different parameters affected.
7	Enlist VCRS system specifications at your institute.
8	Prepare chart VCRS/ VARS.
9	Visit cold storage plant, ice plant and air-conditioning Plant to observe VCRS or VARS, different kinds of ducting. After visit, student should submit detail industrial report of his understanding.
10	Preparation of small model of VCRS.
11	Built up/ evacuate VCRS available at your institute.
12	Prepare property table for different types of refrigerants/ alternate fuels.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any):

Sr. No.	Unit	Unit Name	Strategies
1	Ι	Internal Combustion (I.C.) Engines.	Movies, power point presentations, live demonstration, performance with IC engines.
2	П	Alternate Fuels.	Physical demonstration of properties of fuels, movies, lives examples.
3	III	Refrigeration.	Movies, power point presentations, live demonstration, performance with VCRS, industrial visits, Visit of cold storage/ice plants.
4	IV	Air-Conditioning.	Movies, power point presentations, live demonstration, performance of air conditioners, industrial visits.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Heat Engines.	Pandya and Shah.	Charotar Publishing House.
2.	Thermodynamics and Heat power Engg.	Mathur and Mehta.	Tata Mcgraw- Hill.
3.	Heat Engines.	D. A. Wrangham.	Cambridge University Press.
4.	Thermal Engineering.	R K Rajput.	Laxmi. Publications
5.	A Text book of Thermal Engineering.	R S Khurmi& J.K. Gupta.	S Chand & Co.
6.	I C Engine	Domkundwar	
7.	I C Engine	Mathur and Sharma.	DhanpatRaiPubli.
8.	Principles of Refrigeration	Dossat	Pearson Education
9.	Refrigeration and air conditioning	Arora & Domkundwar	Khanna publication.
10.	AText Book of Refrigeration and Air Conditioning	R S Khurmi	Eurasia Publishing House
11.	Thermal engineering	P.L.Ballaney	Khanna Publication
12.	Thermal Science and Engineering	Dr. D.S.Kumar	S.K.Kataria & Sons.
13.	Refrigeration & Air-Conditioning.	R.K.Rajput	S.K.Kataria& Sons.

B) List of Major Equipment/ Instrument with Broad Specifications:

SR.NO.	EQUIPMENT	BROAD SPECIFICATION
1	I C Engine test rig- petrol and diesel – both.	Single cylinder/ multi stage- 4 stroke- Petrol and diesel engine test rig with hydraulic / eddy current dynamometers, 3kW or higher capacity- sensors on appropriate places for temperature measurement, arrangement of cam shaft to measure valve timing, flow measuring device at inlet and outlet with computerized data acquisition system and MPFI system (Petrol test rig is preferable with CNG kit fitted).
2	VCRS test rig.	Hermetically sealed compressor of at least half HP with HP/LP cut out, air cooled condenser, expansion valve, evaporator, flow meter/ rotameter for measuring refrigerant flow, solenoid valves/ temperature sensors at compressor in/out, condenser in/ out, expansion in/out, evaporator in/out, pressure gauge at in out of compressor, withMulti-channel digital

		temperature indicator, digital volt meter and
		ammeter, R-134a refrigerant. Digital temperature and Humidity
3	Psychrometer& Thermometer-	measurement, temperature range of -25
	wet bulb and dry bulb.	degree C to 60 degree C or higher.
4		Digital air flow measuring device with flow
4	Anemometer.	range measurement of 0.4m/s up to 25m/s
		with a resolution of 0.1m/s.
5	Refrigeration tool kit.	Standard refrigeration tool kit
		Flaring tool set, single type for tube 4.7mm to 16mm O.D., Swaging tool set, single type
		for tube 4.7mm to 16mm O.D., Bending
		spring external type, for copper tube 3mm to
		16mm dia., Tube bender of 3 mm to 16 mm
6	Tool kit for tubing operations for	DIA, Pipe cutter miniature for copper tube
6	Refrigeration.	3mm to 16mm DIA, Pinch of tool, for
		copper tube, 6mm to 18mm DIA, Ratchet
		spanner of 6.4 sq.mm reversible, Capillary
		plague gauge, Pinch of plier/crimping plier
		tool 6mm – 18mm DIA, Piercing plier 6-
		18mm & reversing valve with access fitting.
7	I C Engine tool kit.	Standard Engine maintenance tool kit
		available at workshops.
O	I call datactor	Electronic refrigerant leak detector with
8	Leak detector.	microprocessor control. Gas leak detector for halogen gas
		Two stage rotary vacuum pump capacity
	Refrigerant evacuation pump /	approx. 60 – 10rmp capable of evacuating to
	vacuum pump.	50 microns of Hg and fitted with gas ballast,
		anti such back valve and single phase motor
		Evacuating and refrigerant charging station,
		compression a) Rotary two stage vacuum
		pump and motor (with gas ballast and anti
		such back) manifold with gauges and valves
9		and capable of pulling vacuum up to 50
		microns of Hg and with provision of
	Optional Items for evacuation	connecting to a microns level vacuum gauge
	pump/ vacuum pump.	b) Graduated charging cylinder with
(A)		provision for temperature correction and all
		necessary isolating valves II) Evacuating and
		charging station as above but fitted with weighing scale (up to 2 kg. In lieu of (b)
		above and with accuracy of +/-1 g for
		charging hydrocarbons)
10	Window/ split air conditioner test	Test rig containing air conditioner of 1.5
10	set up.	tons- in open condition.
11	Air washer/ cooler.	Air washer test rig.
12	Various fans for demonstration.	Models of fans- includes radial, backward,
12	various rans for demonstration.	forward curve blades etc.
13	Brazing kit	Brazing tool kit with suitable Silver and

		copper brazing alloy rods for 1/4" to 7/8"		
		tubes – Cu to cu, cu to steel, cu to brass and		
		appropriate flux		
		Pressure guage diameter 63mm with		
	Drassura gauga and gauga	recalibration set, Compound gauge, diameter		
14	Pressure gauge and gauge manifold for charging	63mm, with recalibration set screw, scale		
		vacuum 76mm. Pressure 15 Kg/sq.cm, Two		
		way manifold with gauges and charging pipe		
15	Defricements	Hc refrigerant in cylinders/disposable		
13	Refrigerants	containers, 134 A refrigerant in cylinders		
16	I.C.Engine neuts	Fuel pump, different types of carburetors,		
10	I C Engine parts	different types of injectors- distributors.		
		Cut model of 4 stroke petrol and diesel		
17	I C Engine cut section/ models	engine, cut model of 2 stroke petrol engine,		
	_	cut model of fuel pump		

C) List of Software/Learning Websites

- i. http://nptel.ac.in/courses/112105128/
- ii. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Ref%20and%20Air%20Cond/New_index1.html
- iii. http://www.youtube.com/playlist?list=PLE2DA184A2E479885
- iv. http://www.kolpak.com/asset/?id=tuqvr

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. S. R. Pareek,** Head of Department, Mechanical Engineering, Tolani F. G. Polytechnic, Adipur.
- **Dr. Shah Atul S., Lecturer** in Mechanical Engineering, Dr. S & SS Ghandhy Collage of Engineering and Technology, Surat.
- Shri M. N. Patel, Lecturer in Mechanical Engg, Government Polytechnic, ChhotaUdepur.
- Shri Haresh G Ranipa, Lecturer in Mechanical Engineering, Shri N M Gopani Polytechnic, Ranpur.
- Shri H.R.Sapramer, Lecturer in Mechanical Engineering, Sir B.P.T.I., Bhavanagar.
- Shri U.O. Khant . Lecturer in Mechanical Engg, Government Polytechnic, Rajkot.
- Shri A. A. Lohia, Lecturer in Mechanical Engg, Government Polytechnic, Rajkot.

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. S.K.Pradhan,** Associate Professor, Mechanical Engg. NITTTR,Bhopal
- Dr. A.K.Sarathe, Associate Professor, Mechanical Engg. NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: DESIGN OF MACHINE ELEMENTS (COURSE CODE: 3351902)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering	5 th Semester

1. RATIONALE

For production of machine parts and components it is required that specific shape and size of machine parts are determined and their drawings are prepared. We also have to select specific material for that product. This process is called as design. In designing a machine component it is necessary to have a good knowledge of many subjects such as Mathematics, Engineering Mechanics, Strength of Materials, Theory of Machines, Workshop Processes and Engineering Drawing. Students have learnt these subjects in previous semesters. This course curriculum provides the students' knowledge of design process, as well as familiarity with design of components subjected to various stresses and moments like direct stress, bending stress, twisting moment and combined stresses. In this course students will learn design of machine components/elements like cotter joint, knuckle joint, power screw, levers, helical and leaf springs, couplings, pressure vessels, bearings, etc.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

• Design a simple machine element with appropriate material for given user defined boundary and loading conditions.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning objectives in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify various failures and calculate resisting areas of machine elements.
- ii. Use preferred numbers and standardization to select element/element dimension.
- iii. Design machine element subjected to:
 - a: Direct stresses.
 - b: Bending stresses.
 - c: Twisting stresses.
 - d: Combined stress.
- iv. Design of thin and thick cylinder pressure vessel.
- v. Select appropriate bearing for given situation/application.
- vi. Calculate important bearing characteristics.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total				Examin	ation Sch	neme			
(In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks		Marks Practical Marks		Total Marks
L	T	P	C	ESE	PA	ESE	PA		
3	0	2	5	70	30	20	30	150	

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, ESE -End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS.

	Major Learning	
Unit	Outcomes	Topics and Sub-topics
	(in cognitive domain)	Topies and Sub topies
	1a. List various factors to	1.1 General consideration and factors
Unit – I.	be considered for	influencing the design of machine
	design process.	elements and design process.
Introduction.	1b. Identify and select	1.2 Various materials used in
introduction.	materials that can be	manufacturing of machine
	used for design of	elements and their properties.
	machine elements.	1.3 Types of loads, types of stresses,
	1c. Explain loads,	concept of stress concentration and
	stresses, stress	factor of safety.
	concentration factor	1.4 Standardization and preferred
	and factor of safety.	numbers, numeric examples on
	1d. List Types of loads,	preferred numbers.
	types of stresses	preferred numbers.
	1e. Select standard items	
	and preferred	
	numbers for	
	designing simple	
	machine elements.	
	2a. Describe the design	2.1 Illustration of simple machine
Unit- II	process of simple	elements subjected to direct stresses-
	elements like	independently and identification of
Design of	linkages, etc.	resisting areas (simple numeric
machine	2b. Calculate resisting	examples).
elements	area of simple	2.2 Design of simple machine elements
subjected to	machine element	subjected to uni-axial direct stresses-
direct stresses.	subjected to direct	independently.
	independent stress.	2.3 Design procedure (with numeric
	2c. Explain the design of	examples), steps, identification of
	cotter joint and	resisting areas and design of:
	knuckle joint.	i. Knuckle joint.
	2d. Explain the design	ii. Cotter joint.
	process of riveted	iii. Riveted joints.
	joint, welded joint and	iv. Welded joint-fillet & lap joint.

	threaded fasteners.	v. Threaded fasteners & screw jack.
Unit– III Design of machine elements subjected to bending stresses.	3a. State the fundamental bending equation. 3b. State modulus of various sections subjected to pure bending like levers, beams and axles 3c. List types of levers. 3d. Design simple lever based on given input. 3e. Design leaf spring.	 3.1 Principle of bending and its fundamental equation. 3.2 Modulus of various sections, example of pure bending like levers, beams, axle, etc. 3.3 Types of levers. 3.4 Design procedure (with numeric example) of levers including cross section of arms, bosses and pins. 3.5 Design procedure (with numeric example) of leaf spring.

Unit–IV Design of machine elements subjected to direct and twisting moments.	 4a. State fundamental equation of twisting moment. 4b. List types of shafts with important features of each. 4c. List types of keys, couplings, spring & applications of each 4d. Explain the design procedure of shafts, keys and couplings. 4e. Define helical spring terminology and its 	 4.1 Fundamental equation of twisting moment with design procedure. 4.2 Types of shafts with important features of each. 4.3 Design of shafts (with numeric examples). 4.4 Types of keys, applications of each and design procedure (with numeric examples). 4.5 Types of couplings and applications. 4.6 Design of muff and flange couplings (with numeric examples). 4.7 Types of spring, terminology related to helical spring and applications of
	applications. 4f. Calculate numerical on the design procedure of machine elements subjected to twisting moment.	helical spring.
Unit-V	5a. Define eccentric loading.5b. Draw frame-clamp,	5.1. Eccentric loading-i. Concept.ii. Illustrations like frame, C-clamp,
Design of machine elements subjected to direct and bending stresses.	Bracket, Foundation bolt, Bolts in flange, etc. 5c. Design machine components subjected to eccentric loading.	Bracket, Foundation bolt, Bolts in flange, etc. iii. Design of machine element like C-Clamp, bracket, foundation bolt and bolts in flange.(with numeric examples).
Unit-VI	6a. Define pressurevessels6b. State types of	6.1 Types and applications of pressure vessels used in industries. State Range of pressure also.
Design of	pressure vessels with	6.2 Design of thick and thin cylinders
pressure	range of pressure.	(with numeric examples).
vessels.	6c. Design simple thick and thin cylinder pressure vessels.6d. Design simple thin spherical shell.	6.3 Design of thin spherical shell (with numeric examples).
	7a. Classify bearings.	7.1 Classification of bearings.
Unit-VII	7b. Explain designation	7.2 Bearing designation as per IS.
Colon4in-	of bearings.	7.3 Antifriction bearings: types,
Selection procedure for	7c. Select appropriate anti-friction bearings	advantages, applications. 7.4 Selection procedure of anti-friction
bearings.	from manufacturer's	bearings.
bearings.	catalogue. 7d. Calculate the load on the bearings.	7.5 Calculation for anti-friction bearings: basic dynamic load, load rating, equivalent load, bearing life.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY).

Unit		Teaching	Distri	Distribution of Theory Marks			
No.			R	U	A	Total	
110.		Hours	Level	Level	Level	Marks	
I	Introduction.	8	3	7	4	14	
II	Design of machine elements subjected to direct stresses.	9	3	4	7	14	
III	Design of machine elements subjected to bending stresses.	5	0	0	7	7	
IV	Design of machine elements subjected to direct and twisting moments.	8	4	3	7	14	
V	Design of machine elements subjected to direct and bending stresses.	4	0	3	4	7	
VI	Design of pressure vessels.	4	0	3	4	7	
VII	Selection procedure for bearings.	4	4	3	0	7	
	Total	42	14	23	33	70	

Legends: R = Remember U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- a. If midsem test is part of continuous evaluation, unit numbers I, II (Up to 2.3(ii) only, which are Knuckle and cotter joints only), VI and VII are to be considered.
- b. Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (outcomes in Psychomotor Domain)	
1	ALL	 a. Interpret and write various course related SI units and their conversions. b. Write normal values of ultimate tensile strength, yield strength, density, modulus of elasticity and Poisson's ratio of commonly used materials. c. List normal values of factor of safety for different situations. d. Recall area, volume, section modulus, moment of inertia, radius of gyration, etc. for commonly used various section and shapes. e. Draw orthographic projections symbols. f. Draw symbols of threads, surface roughness, geometrical tolerances symbols, section lines, etc. g. Recall by sketching the general systems for limits, fits and tolerances. 	02
2	II,III, IV and V.	Design of simple components: a. A C15 rod is subjected to tensile load ofkN. Determine diameter of rod if factor of safety is b. Teacher will assign the sketch of a component/s with loading that induces tensile/compression and shear stresses. Teacher will also assign material, load, and factor of safety. Students are asked to determine the dimensions. c. Teacher will assign the sketch of a component/s with loading that induces bending stress in addition to two more types of stresses (from tensile, compression, shear, crushing or other.). Teacher will also assign material, load, factor of safety and other data if required. Students are asked to determine specified dimensions. If required, additional data may be given. d. Teacher will assign the sketch of a component/s with loading that induces twisting moment. This may have additional one or two types of stress/es. Teacher will also assign material, factor of safety and other required data.(Like kW, rpm, Torque, etc.). Students are asked to determine the specified dimensions. e. Student will also prepare the report on this, which will include calculations, sketches in A4 size drawing papers with identification of areas subjected to induced stresses. (Note: Each student of the batch must have different values of data. Use design data book	04

		vyhomovom io managamy. Alan ar	Ι
		wherever is necessary. Also assume suitable data if	
		required. State the assumptions.)	
		Design of assemblies:	
		a. Take load =kN,	
		b. Take material as	
		c. Factor of safety =	
		d. Design following showing other assumptions, steps	
		and final dimensions.	
		i. Knuckle joint.	
2	11 137	ii. Cotter joint.	06
3	II,IV	iii. Screw jack.	06
		iv. Flange coupling.	
		(Note: Each student of the batch must have	
		different values of data. However problem may be	
		same. Students are also expected to solve these as	
		partial assignments at home. Use design data book	
		wherever is necessary. Also assume suitable data if	
		required. State the assumptions.)	
		Sketches and drawings of design assemblies:	
		a. Sketch production drawings of details (individual	
		parts). Show dimensions calculated above at	
		experience number 3. Use A4 size paper only.	
4	II,IV	b. Prepare assembly drawings with dimensions and	02
	, .	scale (if required). Use A4 size paper only.	
		c. Show areas under various stresses induced using	
		color codes.	
		(Students are also expected to solve these as partial	
		assignments at home.)	
		Modeling:	
		a. Create 3D Models of all parts and assemblies (In	
		group of 4 students. Each student will perform one)	
		with dimensions designed at experience number 3	
5	11 137	and drawn at experience number 4 using any	06
3	II,IV	parametric CAD software (like Creo, Solid Edge,	06
	\	and Inventor).	
		b. Take printout of the 3D models and orthographic	
		views (with dimensions) of all parts and	
		assemblies. Attach all prints with term work.	
/A		Tutorials:	
	•	a. Tutorial on bell crank lever design.(Teacher will	
	III	assign the data- one problem).	
6	and	b. Tutorial on bearing. (Teacher will assign the data-	02
	VII	one problems).	02
	V 11	(Students are also expected to solve these as partial	
		assignments at home.)	
		Mini project:	
		= *	
7	дтт	a. Assign simple mechanical assembly (preferably	06
/	ALL	from real life or thought by batch teacher. Students	00
		will be provided with a sketch having 5-6	
		machined/mechanical components (exclude gears,	

cotter, knuckle or other book oriented solved assemblies. Also ensure that such assembly can be manufactured at institute's workshop). Also give load conditions and other necessary information in a batch. b. Batch students will design this assembly with dimensions. Show calculations and steps. c. Sketch production drawings (details and assembly) in A4 size drawing paper manually. d. Present this mini project with photos/movies of mini project execution and with work distribution executed. Use power point presentation.
Total Hours 28

Note:

- a) Students should bring any one reference design book (preferably English) and one design data book (By PSG Coimbatore) during theory and practical/exercises sessions.
- b) It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher. PA component of practical marks is dependent on continuous and timely evaluation of exercises.
- c) Term work report must not include any photocopies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only. However, teacher may allow related photographs/movie for experience number 8.
- d) For 20 marks ESE, students are to be assessed for competencies achieved. They should be given following type of tasks:
 - i. Design some elements of cotter joint/knuckle joint/ power screw.
 - ii. Design of some mechanical elements subjected to three to four types of stresses.
 - iii. Design of flange coupling.
 - iv. Design of leaf spring/ lever.
 - v. Problems on bearing, equivalent load, rating, etc.

8. SUGGESTED LIST OF STUDENT ACTIVITIES.

SR.NO.	ACTIVITY
1	Download and present various presentations related to stresses in machine
/A	elements.
2	Download and present various presentations related to failure of machine elements.
3	Download and present various presentations related to design of machine elements.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any).

Sr. No.	Unit	Unit Name	Strategies
1	I	Introduction.	Power point presentations, live examples, demonstration of BIS on preferred numbers and standardizations,
2	II	Design of machine elements subjected to direct stresses.	Movies/ animations/ educational charts, videos & model of different machine elements subjected to various stresses, live demonstration of failed components,
3	III	Design of machine elements subjected to bending stresses.	Movies/ animations/ educational charts, videos & model of different machine elements subjected to bending, live demonstration of bending and induced stresses.
4	IV	Design of machine elements subjected to direct and twisting moments.	Movies/ animations/ educational charts, videos & model of different machine elements subjected to twisting, live demonstration of twisting.
5	V	Design of machine elements subjected to direct and bending stresses.	Movies/ animations/ educational charts, videos & model of different machine elements subjected to direct and bending stresses.
6	VI	Design of pressure vessels.	Movies/ animations/ educational charts, videos, demonstration of live pressure vessels.
7	VII	Selection procedure for bearings.	Movies/ animations/ educational charts, videos, live demonstration of bearings, demonstration of BIS catalogues.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S.No.	Title of Book	Author	Publication
1.	Machine Design.	R.K.Jain.	Khanna Publishers.
2.	Machine Design	TVS Murthy and N.Shanmugam.	Anuradha publications.
3.	Machine Design	Pandya and Shah.	Charotar Publishing House Pvt. Limited.
4.	Machine Design	R.C.Patel and A.D.Pandya	Acharya Book Depot, 1959.
5.	Design of Machine Elements	Shigley.	Tata McGraw-Hill Education.
6.	Design Data Book	P.S.G. College of Technology, Coimbatore.	P.S.G. Publication.
7.	Design Data Book	K. Mahadevan & Balveera Reddy.	S. Chand.
8.	A Text book of Machine Design	R.S.Khurmi and J.K.Gupta	S. Chand.

0	Design of machine	V.B.Bhandari.	McGraw-Hill.
٦.	elements.		

B) List of Major Equipment/ Instrument with Broad Specifications:

Sr.No.	Major Equipment/ Instrument	Broad Specifications
1	Wooden models (with cut sections) of	Two sets of each with design
	knuckle joint, cotter joint, riveted	dimensions.
	joints, welded joints, screw jacks,	
2	Assorted bearings.	As per BIS.
3	Miniature pressure vessels.	As per standards / design dimensions.
4	Assorted levers, shafts, couplings,	Used as machine elements.
	flanges, keys, C-clamps, frames, other	
	machine components.	
5	Assorted failed components.	Used as machine elements.

C) List of Software/Learning Websites

- a. Chp:1 Introduction.
 - i. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left_home.html
- b. Chp:2 Design of Machine elements subjected to direct stresses.
 - i. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left_mod4.html
- c. Chp: 3 Design of Machine elements subjected to Bending stresses.
 - i. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left_mod7.html.
- d. Chp:4 Design of Machine elements subjected to direct and twisting moments.
 - i. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left_mod4.html
 - ii. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left_mod5.html
 - iii. http://nptel.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Machine%20design1/left_mod8.html
- e. Chp: 5 Design of Machine elements subjected to direct and bending stresses.
 - i. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left_mod11.html
- f. chp: 6 Design of Pressure vessels.
 - i. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left_mod9.html
- g. Chp:7 Selection Procedure for bearings.
 - i. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left_mod14.html
- h. Chp:ALL
 - https://www.machinedesignonline.com/MDO_Portal/design_compone nt.html

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE.

Faculty Members from Polytechnics:

- **Prof. M.P.Jakhaniya**, Lecturer in Mechanical Engineering, C.U.Shah Govt.Poly., Surendranagar.
- **Prof. D.R.Katariya**, Lecturer in Mechanical Engineering, Government Polytechnic, Bhuj.
- **Prof.V.N.Patadiya,** Lecturer in Mechanical Engineering, N.M. Gopani Polytechnic, Ranpur.

Coordinator and Faculty Members from NITTTR Bhopal:

- **Prof. S.K.Pradhan,** Associate Professor, Mechanical Engg. NITTTR,Bhopal
- **Dr. A.K.Sarathe,** Associate Professor, Mechanical Engg. NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MANUFACTURING ENGINEERING-III (COURSE CODE: 3351903)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering/Mechatronics Engineering	5 th Semester

1. RATIONALE

Large numbers of industrial parts have features like teeth, threads, slots, splines, surfaces etc. Quality of these parts depends on parameters aspects such as accuracy of profile, dimension & surface finish controls. These parameters are specified on the product drawing and require suitable machines & cutting tools for its manufacturing. Nano-parts largely used in control systems require specialised manufacturing approach due to their miniature size. Correct selection of process & its parameters on such machines; plays a vital role in obtaining required quality product at optimum cost. This course will make students familiar with fundamentals of such conventional & advance processes on various machines like grinding machines, super-finishing machines, broaching machines, jig boring machines, non-conventional machining processes, Micro Electro Mechanical Systems (MEMS) etc.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different type of skills so that students are able to acquire at least following competencies:

- Produce the part as per given drawing/specifications by adopting conventional machine tools and/or non-conventional machining processes using optimum process parameters, safe working procedures, suitable work & tool holding devices and appropriate cutting tools.
- Plan and supervise manufacturing operations at a shop floor of machine tools based manufacturing industries.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire at least following learning outcomes in cognitive, psychomotor and affective domain on the content specified in this subject.

- **i.** Explain working of grinding, super finishing, gear cutting, broaching, threading, non-conventional and advance machining methods with kinematics and coolant/ lubrication systems stating functions of each element.
- **ii.** Interpret designation system / method of cutting tools and tool holders used on machine tools.
- iii. Set the machine and mount the job, cutting tools and tool holders correctly.
- **iv.** Select appropriate cutting tools, work holding devices and cutting parameters for the given work piece.
- **v.** Outline the process and produce the job/product as per given drawing/ specification.

4. TEACHING AND EXAMINATION SCHEME

Tanahing Sahama		Total	Total Examina			ation Scheme		
Teaching Scheme (In Hours)				Theory Prac Marks Ma			Total	
L	Т	P	С	ESE	PA	ESE	PA	Marks
3	0	4	7	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, **ESE** -End Semester Examination; **PA** - Progressive Assessment

5. COURSE DETAILS.

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
Unit – I. Introduction to Manufacturing Engineering-III.	1a. Explain Need, Scope & importance of Manufacturing Engineering.	1.1 Need, Scope & importance of Manufacturing Engineering-III in the industriesvarious grinding and super-finishing machines, thread production, broaching machines, electro-mechanical systems (MEMS). Non-conventional and advance methods of machining.
GIN C	1b. Define machining parameters 1c. Explain the effect of different machining parameters on quality and cost of product.	 1.2 Definitions of machine tool, cutting speed, feed, depth of cut, metal removal rate, surface finish symbols and values, cutting tools and their geometry. 1.3 Need of attitude, knowledge & skill required for shop floor supervision in Machine tools based industries for quality and cost effective production. 1.4 Importance of processes and required parameters (like material removal rate, cutting power, cutting time, cutting speed, feed, depth of cut, number of cuts, tool signature, tool life etc) on quality and cost of product.

Unit– II Grinding and super finishing processes.	 2a. Classify grinding machines 2b. Describe constructional features_and working of various grinding and super-finishing machines. Gear manufacturing, 2c. Select appropriate finishing operation and grinding machine as per production drawing of the component. 	2.1 Classification, Constructional features including coolant and lubrication systems, motion and power transmission path, working, application and cutting parameters of following grinding machines with "commonly used grinding wheels and work piece materials": i. Cylindrical (centre less, internal and external) grinding machines. ii. Bench and portable grinder. iii. Tool and cutter grinding machine. iv. Profile grinding machine. 2.2 Methods of mounting work piece on cylindrical grinding machines (Including chuck and mandrel).
	2d. Explain Honing, lapping, buffing & super-finishing processes with their applications.	2.3 Honing, lapping, buffing and other super finishing processes and their applications.
	2e. Explain Cutting action of grinding wheel. 2f. Define Terms associated with grinding wheel operations including loading, glazing, dressing and truing. 2g. Select grinding wheel. 2h. Maintain grinding wheel for effective grinding.	 2.4 Cutting action of grinding wheel. 2.5 Terms associated with grinding wheel operations including loading, glazing, dressing and truing. 2.6 Grinding wheels: i. Nomenclature. ii. Types and shapes. iiii. Designation system and its interpretation. iv. Selection criteria and applications. 2.7 Static and dynamic balancing of grinding wheels - need and methods. 2.8 Methods of mounting grinding wheel.
Unit– III Gear manufacturing and finishing processes.	 3a. List types of gears 3b. Assimilate the Gear manufacturing & finishing processes. 3c. Describe constructional features and working of various gear manufacturing machines. 3d. Select appropriate 	 3.1 Types of gears, nomenclature of spur and helical gears. 3.2 Gear generating and forming processes-concept, differences and applications. 3.3 Classification, constructional features including coolant and lubrication systems, motion and power transmission path, working and application of gear milling, gear hobbing and gear shaping machines.

	gear manufacturing machine as per the given situation.	3.4	Nomenclature and sketch of gear hob and gear shaping cutter.
	3e. Select gear cutting parameters for given materials and workpiece 3f. Explain procedural steps for producing accurate gears using gear milling, gear hobbing and gear shaping machines.	3.5 3.6 3.7	Gear Cutting parameters for commonly used materials and workpiece Tool mounting methods on gear milling, gear shaping and gear hobbing machines. Gear finishing processes- shaving & grinding.
Unit-IV Thread production methods.	4a. Explain thread production processes.	4.1	Thread nomenclature and important terminologies used in thread production. Various threads production processes like turning, rolling, grinding, taping, etc. their applications, advantages and limitations.
	 4b. Describe constructional featuresand working of various thread production machines. 4c. Select appropriate thread production machine as per the given situation. 4d. Explain different steps for producing thread on thread production machine. 		Constructional features including coolant and lubrication systems, motion and power transmission path, working and application of various threads production machines/ processes like lathe, rolling, grinding, taping, etc. Thread cutting parameters for commonly used material s and workpiece. Tool mounting methods on thread production processes.
Unit-V Broaching, jig boring and special purpose machine (SPM) tools.	 5a. Explain constructional features, working and applications of broaching machines. 5b. List types of broaching machines. 5c. Select appropriate broaching machine as per the given situation. 	5.15.25.3	Types, constructional features including coolant and lubrication systems, motion and power transmission path, working and applications of broaching machines. Different Shapes that can be produced by broaching process. Nomenclature and sketch of a simple broach

	5d. Explain constructional features and working of jig boring machines. 5e. Identify SPM to produce a given complicated job.	5.4 5.5 5.6 5.7	Types, constructional features including coolant and lubrication systems, motion and power transmission path,, working and application of jig boring machines. Various SPM (Only names) and their areas of application. Parts fit for SPM. Comparison of SPM with other automates.
Unit-VI Non- conventional and advance methods of machining.	 6a. Appreciate use of Non-conventional machining methods. 6b. Explain working principles and working parameters of non-conventional machining methods. 6c. Select a non- conventional machine as per requirement 	6.2	Need of nonconventional machining and comparison between conventional & non-conventional machining methods. Classification, working principles, application and working parameters of following non-conventional machining methods: i. Electro chemical machining (ECM). ii. Electro discharge machining (EDM) including wire cut and dies sinking. iii. Ultrasonic machining (USM). iv. Laser beam machining (LBM). v. Abrasive jet machining (AJM). Criterion for selection of non-conventional machining methods.
GINOC CONTRACTOR	 6d. Explain micro electromechanical systems (MEMS). 6e. List materials used for MEMS. 6f. Explain working principle and applications of various MEMS fabrication techniques. 	6.4 6.5 6.6	Need of micro electro-mechanical systems (MEMS). Materials and their properties used for MEMS manufacturing. Working principle and applications of MEMS fabrication techniques: i. Chemical vapour deposition. ii. Lithography. iii. Photolithography. iv. Dry & wet etching.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY).

Unit	Unit Title Teaching Distribution of Theory Mark			Marks		
No.		Hours	R Level	U Level	A Level	Total Marks
I	Introduction to manufacturing engineering-III.	03	00	04	00	04
II	Grinding and super finishing processes.	09	07	07	04	18
III	Gear manufacturing and finishing processes.	08	04	05	03	12
IV	Thread production methods.	05	02	04	04	10
V	Broaching, jig boring and special purpose machine tools.	08	05	04	03	12
VI	Non-conventional and advance methods of machining.	09	05	06	03	14
	Total	42	23	30	17	70

Legends: R = Remember U = Understand; A = Apply and above levels (Bloom's revised taxonomy).

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- a. If mid semester test is part of continuous evaluation, unit no I, II, III & VI (Up to 6.3 only) are to be considered.
- b. Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psycho-motor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psycho-motor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (outcomes in psycho-motor Domain)	
1	I	Preparatory activity (Includes Home Assignments): Demonstrate various cutting parameters, carbide inserts with ISO designation system and explain the steps to calculate cutting speeds. Student will prepare the report on following. a. Tabulate various cutting tools materials with main elements, properties and applications. b. Calculate RPM for lathe, milling cutter and drill spindle; based on given data. Use equations. Each student should be given different data for diameters and cutting speeds. c. Calculate strokes/minute for shaping/planning machine based on given data. Use equations. Each student should be given different data for cutting speeds and length of jobs.	
2	All	 Mini Project: Manufacture the assembly which has been designed in the course Design of Machine Elements. Keep the same batch. Student will prepare the report on following. a. Prepare production drawings of the assembly and details. b. Manufacture the parts. c. Note down work holding devices, cutting tools and cutting parameters used for each part and each operations. Summarised this in tabular form. d. On completion, present and share the experience of this mini project with photos/videos of mini project execution and with work distribution executed. Use power point presentation. 	08
3	II, III,IV & V	Kinematics and motion transmission systems: Demonstrate motion and power transmission path, transmission systems, work mounting systems, tool mounting systems and tool holders/holding systems of cylindrical/surface grinding, tool and cutter grinding, gear hobbing, gear milling, gear shaping, threading and broaching machines. Student will prepare the machine wise report on all machines included here. a. Sketch and label main elements of machine kinematics. b. Demonstrate and explain machining process with position/motion of work piece and tool. Video may	08

		 also be used. c. Sketch cutting tools with nomenclature. d. Sketch tool holders. e. Explain methods of work and tool mounting systems. f. Tabulate cutting parameters for commonly used tool materials and work piece materials. 	
4	I	 Grinding various cutting tool angles: a. Sketch single point cutting tool. b. List various angles on single point cutting tool and state importance of each. c. Sketch set up to grind each angle on tool and cutter grinder. d. Grind the single point cutting tool on tool and cutter grinder. 	02
5	II	Produce job with various machining methods: a. Sketch the production drawing of the part. Part should include plain/taper turning, knurling, threading, cylindrical/surface grinding, etc. b. Outline the processes. c. Calculate/select, set, observe and record the cutting parameters for each process. d. List the cutting tools you have used. Also state specifications of each. e. List the work holding devices you have used. Also state specifications of each. f. Produce the part.	08
6	II, &IV	 Produce complex job: a. Sketch the production drawing of the part. Part should include shaping, milling, drilling, taping, boring, slotting, surface grinding, etc. b. Outline the processes. Prepare process plan for the same. c. Prepare workshop layout and route sheet. d. Produce the part, Calculate/select, set, observe and record the cutting parameters for each process. e. List the cutting tools you have used. Also state specifications of each. f. List the work holding devices you have used. Also state specifications of each. 	10
7	III	Gear cutting: a. Sketch the production drawing of the part. b. State equations to find module, pitch circle diameter, outside diameter, circular pitch and number of teeth. c. Produce spur gear on milling machine using	06

		 indexing head. Calculate/select, set, observe and record the cutting parameters. d. List the cutting tools you have used. Also state specifications of each. e. List the work holding devices you have used. Also state specifications of each. 	
8	IV	 a. Sketch the production drawing of the part. b. Prepare a multi start/square threaded bolt and nut. Calculate/select, set, observe and record the cutting parameters for the process. c. List the cutting tools you have used. Also state specifications of each. d. List the work holding devices you have used. Also state specifications of each. 	06
9	V &VI	 Presentation: a. Teacher will assign any one topic to each batch student from Unit number V &VI. Each student will have different topic. b. Using power point presentation, each student will present the topic. Presentation must include related movie/s. c. Teacher will assign the topic on cutting tools/work holding devices/machine tools(Unit II to V). Each student will have different topic. Student will download the content, preferably videos/catalogues and will present the same. 	06
10	All	a. Visit at least three related industries (one must be having non-conventional manufacturing facilities) and prepare industry wise technical report. Hint: Before visit, faculty will remind student regarding portion of subject content (especially practice) not covered within institution premises (due to non-availability of resources). Faculty will also direct student's attention towards all possibility/scope available at the industries to be visited. Student will observe and record all such details like Specifications, Operating procedure, Selection of operational parameters, Details about tool/work holders used, Machine setting, Product details being manufactured for each method/machine like gear forming/generating, honing/lapping/buffing machine, Non-conventional machine, Jig boring machine, Broaching machine etc.	

b. Prepare a technical report on latest technical events, exhibition, seminar visited.	
Total Hours	56

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by faculty.PA component of practical marks is dependent on continuous and timely evaluation of exercises.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Mini project and presentation topic/area has to be assigned to the students in the beginning of the term by faculty.
- d. Student activities are compulsory to perform.
- e. Term work content of industrial visit report should also include following in addition to content of experience number 10.Duplication may be avoided.
 - i. Brief details of industry visited.
 - ii. Type, location, products, rough layout, human resource, etc of industry.
 - iii. Details, description and broad specifications of machineries/ processes observed.
 - iv. Safety norms and precautions observed.
 - v. Student's own observation on industrial environment, productivity concepts, quality consciousness and quality standards, cost effectiveness, culture and attitude.
 - vi. Any other details / observations suggested by the accompanying faculty.
- f. For practical ESE part, students are to be assessed for competencies achieved. They should be assigned production drawing of part to be produced at workshop. Due weightage should be given to Knowledge, skill, approach and safety practices demonstrated by an individual in producing the given part/exercise.

8. SUGGESTED LIST OF STUDENT ACTIVITIES.

SR.NO.	ACTIVITY.		
	Prepare a report on at least one industrial component with its complete		
K^{\sim}	technical details covering the points like design criterion, features included		
	with Dimensional/Geometric constraints, manufacturing resource		
♦	requirements, challenges in controlling its quality and cost, etc.		
2	Collect the technical details about all production facilities available at		
2	nearby industry/industries.		
3	Visit or participate in the technical events, exhibition, conference, seminar		
3	etc.		
1	Collect/download at least four different machine tool catalogues including		
4	at least one special purpose, non-conventional or advance machine.		
5	Collect/download at least one catalogue each of cutting tool, work holding device		
	and tool holder.		

9. SPECIAL INSTRUCTIONAL STRATEGIES.

Sr. No.	Unit	Unit Name	Strategies	
1 T		Introduction to manufacturing	Demonstration on machine, Power	
1	1	engineering-III.	point presentations.	
		Grinding and super finishing	Demonstration on machines, videos,	
2	II	processes.	live explanation at workshop place,	
			presentations, industrial visits.	
		Gear manufacturing and	Demonstration on machines, videos,	
3	III	finishing processes.	live explanation at workshop place,	
			presentations, industrial visits.	
		Thread production methods.	Demonstration on machines, videos,	
4	IV		live explanation at workshop place,	
			presentations, industrial visits.	
		Broaching, jig boring and	Demonstration on machines, videos,	
5	V	special purpose machine	live explanation at workshop place,	
		tools.	presentations, industrial visits.	
		Non-conventional and	5	
6	VI	advance methods of	Videos on trends, presentations.	
		machining.	0.7	

10. SUGGESTED LEARNING RESOURCES.

A) List of Books.

Sr.No.	Title	Author	Publisher
1	Machine tools technology	G. S. Kandasami	Khanna publisher
2	All about machine tools	Gerling	John Wiley & Sons
		_	Canada, Limited
3	Machine tools	B. Chennov	
4	Machine tool design VolI	N. Acherkan	Mir publisher
	to IV		
5	Metal cutting technology &	K. G. Chandiramani	Tata McGraw Hill,
	Experiments		New Delhi
6	Engineering Productivity	W F Walker	Crosby Lockwood &
	Vol.1 & 2		Son LTD
7	Principles of Engineering	A. Lissaman and S.	Hodder Arnold
	Production (Higher	Martin	
	techniques)		
8	Production Engineering	Dr. P. C. Pande& C.	Standard Publishers
	Sciences	K. Singh	Distributors
9	Fundamentals of Metal	W. A. Knight and	CRC Press
	Machining and Machine	Geoffrey Boothroyd	
	Tools		
10	The Art of Tool & Cutter	S. P. Narang	S. Chand
	Grinding		
11	Production Technology	HMT	Tata McGraw Hill,
	ISBN: 9780070964433		New Delhi
12	Advanced Machining	V.K.Jain	Allied Publishers,

	Processes		New Delhi
13	Modern Machining	P. C. Pandey	Tata McGraw Hill,
	Processes		New Delhi
14	M.E.M.S. and	Tai-Ran Hsu	McGraw-Hill
	microsystems: design and		
	manufacturing.		
15	M.E.M.S.: Fundamental	VikasChoudhary,	CRC Press
	Technology and Application	Krzysztof Iniewski	
16	Manufacturing Technoligy	Kalpak Jian	

B) List of Major Equipment/ Instrument with Broad Specifications:

SR.NO.	Resource with brief specification.
1	Centre lathe, minimum 500 mm between centre, with required set of work holding devices, cutting tools, accessories and tool holders. Cutting tools to include carbide inserts and related tool holders for carbide inserts.
2	Horizontal milling machine, minimum 500 mm longitudinal traverse, with required set of work holding devices, cutting tools, accessories and tool holders. Cutting tools to include carbide inserts and related tool holders for carbide inserts. Should also include indexing head.
3	Drilling (Column and radial both), minimum 25 mm capacity, with required set of work holding devices, cutting tools, accessories and tool holders.
4	Tool and cutter grinding machine, with required set of work holding devices, cutting tools, accessories and tool holders.
5	Cylindrical grinding machine, minimum 50 mm outside diameter can be ground, minimum work piece length to be ground should be 500 mm, with required set of work holding devices, cutting tools, accessories and tool holders. Or Surface grinding machine.

C) List of Software/Learning Websites:

- i. http://nptel.ac.in/video.php?subjectId=112105126
- ii. http://nptel.ac.in/courses.php?disciplineId=112
- iii. http://nptel.ac.in/courses/112104028/
- iv. http://nptel.ac.in/courses/112105126/27
- v. http://www.youtube.com/watch?v=bmooEZyivxo
- vi. http://www.youtube.com/watch?v=mWy9awGv6so
- vii. http://www.youtube.com/watch?v=mKES5Fyz9l0
- viii. http://www.youtube.com/watch?v=BgGXQUeYNKw
 - ix. http://www.youtube.com/watch?v=eaeEn1Gs4aQ
 - x. http://www.youtube.com/watch?v=49GpJ7yhecg
- xi. http://www.youtube.com/watch?v=XfYXelZ4IaY
- xii. http://www.youtube.com/watch?v=SNWF_4jQ2pU
- xiii. http://www.youtube.com/watch?v=pI1QGpmKqow

- xiv. http://www.youtube.com/watch?v=N7NofmHWWPQ
- xv. http://en.wikipedia.org/wiki/Microelectromechanical_systems
- xvi. http://www.engineersgarage.com/articles/mems-technology

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. M. M. Jikar,** HOD, Mechanical Engineering, N. G. Patel Polytechnic, Bardoli.
- **Prof. J. P. Parmar**, Lecturer in Mechanical Engineering, C. U. Shah Polytechnic, Surendranagar.
- **Prof. P. M. Rojasra**, Lecturer in Mechanical Engineering, Sir B. P. T. I., Bhavnagar.

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. S.K.Pradhan**, Associate Professor, Mechanical Engg. NITTTR, Bhopal
- Dr. A.K.Sarathe, Associate Professor, Mechanical Engg. NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INDUSTRIAL ENGINEERING (COURSE CODE: 3351904)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering	5 th Semester

1. RATIONALE

Prosperity of nation in general depends on the productivity of industries and quality of production. Technical managers, engineers, plant operators, machine operators, supervisors and workers working in industries have to compulsorily meet set standards of production in terms of quality, quantity and productivity so as to compete domestic and international market. This is possible for them only when they employ and exploit the principles of industrial engineering. Industrial engineering always aims to achieve higher productivity and better standards of quality through its constant endeavor in design, improvements and installation of integrated systems of human resource, machines and methods.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

• Improve productivity and quality by applying industrial engineering, quality control and cost reduction/saving techniques.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Improve productivity using work study and method study techniques.
- ii. Analyze work content and calculate standard time in a given situation.
- iii. Apply Statistical Quality Control tools in a given situation.
- iv. Select material handling equipment.
- v. Apply Ergonomics for human comfort at work place.
- vi. Appreciate the emerging trends in industrial engineering.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Examination Scheme					
(In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks Practical Marks		Total Marks	
L	T	P	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS.

	Major I coming Outcomes	
Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
TT . 4. 1	1a. Appreciate importance of	1.1 Industrial engineering-definition,
Unit-1	industrial engineering,	objectives and techniques.
T . 1	productivity and work	1.2 Scope, importance and applications
Introduction	study.	of industrial engineering.
to Industrial	1b. Describe ways to enhance	1.3 Methodology and approach of
Engineering.	productivity for given	Industrial engineering.
	simple cases.	1.4 Productivity – concept, definition,
	1c. Explain concept and	importance and ways to enhance it,
	importance of SQC	numeric examples.
		1.5 Introduction to work study.
		1.6 Introduction to statistical quality
		control (SQC).
	2a. Define work study,	2.1 Work study-Definition, techniques
Unit-2	method study and work	and role to enhance productivity.
	measurement.	2.2 Importance of human factors in
Work	2b. State the basic procedure	application of work study
Study.	of work study, method	techniques.
	study and work	2.3 Basic procedure of method study.
	measurement.	2.4 Methods of recording data for
	2c. Prepare in the standard	method study using standard
	formats the outline	symbols, process charts and
	process chart, flow	diagrams.
	process chart, flow	2.5 Preparation of operation (outline)
	diagrams, man machine	process chart for given mechanical
	chart and process plan for	assembly having 6-8 components.
	given data.	2.6 Process planning-concept, meaning,
	2d. Modify given process plan	importance, functions, procedure
	and flow diagram for	and forms used.
_4	improvements.	2.7 Information required for process
	2e. State principles of motion	1 2
	economy.	from process planning.
	2f. Analyze work content and	2.8 Prepare process plan for given
	calculate standard time in	mechanical components, take 2-3
	a given situation.	components.
		2.9 Preparation of flow process chart
		and flow diagram for given
		mechanical components having at
		least 6-8 major operations.
		2.10 Given the process plan, operation
		process chart and flow diagram,
		develop questioning techniques in
		analyzing data for method study.
		Also develop and improve the
		method, based on analysis of given
		data.
		2.11 Principles of motion economy

applied in (a) use of human body, (b) design of work place layout (c) design of tools and equipment. 2.12 Principles of micro motion study, Therbligs and SIMO chart. 2.13 Man and machine chart. 2.14 Basic procedure of work measurement. 2.15 Equipment used in time study. 2.16 Job elements and their types. 2.17 Methods of measuring timecumulative and fly back timing. 2.18 Concept of rating and rating scale. 2.19 Allowances-types, normal values and applications. 2.20 Calculation of basic time, standard time and work content. 2.21 Concept of work sampling/ activity sampling. Definition of 3a. Appreciate importance of 3.1 quality, quality control (QC), quality assurance Unit-3 quality. 3b. Define quality, quality (QA), statistical quality control Quality control (QC), quality (SQC) and reliability. Importance of quality. Assurance. (QA),3.2 assurance Difference between reliability and statistical quality control 3.3 (SOC) and reliability quality control. Factors affecting and improving 3c. Differentiate between 3.4 inspection and quality reliability. control. 3.5 QA tools. 3.6 Concept of total quality cycle, 3d. Calculate mean, mode, quality of design, quality of median and standard deviation for simple data. performance, quality of conformity and total quality. 3e. Prepare suitable distribution 3.7 Difference between inspection and frequency chart for a given data. quality control. Fundamentals of statistics-types of 3f. Determine central 3.8 tendency and dispersion frequency, variations. in a given situation. boundary and midpoint, frequency 3g. Calculate distribution, frequency histogram, probabilities frequency bar chart and polygon using normal distribution. chart. 3.9 Frequency 3h. Define binomial and distribution curve. Poisson distribution. central tendency, spread or dispersion and range, mode, median and mean, standard deviation and variance with numeric examples. 3.10 Concept of probability and normal distribution. 3.11 Area under normal distribution and examples on normal distribution. 3.12 Introduction binomial and to Poisson distribution.

4a. Explain various tools of 4.1 Concept of variability. SQC. 4.2 **SQC** tools and Unit-4 statistical 4b. Compare variables and fundamentals. attributes 4.3 Concept and differences between **Statistical** 4c. Calculate control limits, variables and attributes. **Ouality** range / mean and prepare 4.4 Control charts for variable quality-Control control charts. objectives, applications, (SOC). types, calculations of control limits and 4d. Calculate number/ percentage of items falling range/mean, methods to plot and and outside interpretations (X bar-R chart) and specifications limits from examples. 4.5 and standard Control charts for attribute qualitymean applications, deviation using normal objectives, distribution curve. calculations of control limits and range/mean, methods to plot and 4e. State and explain various methods of acceptance of interpretations (p, np, 100p and c incoming materials chart) and examples. 4f. Prepare and operate single 4.6 Process capability – meaning, and double sampling plans definition and method to calculate, on the basis of given lot numeric examples. size, AQL and inspection 4.7 Acceptance sampling: level. i. Quality control of incoming 4g. Describe raw material and components. process random capability. ii. Concepts of 4h. Explain consumers and sampling. producers risk. iii. Sampling plans: definition, 4i. State the importance of terminology, types (Single, OC curve and interpret double and multiple), OC curves in a given implementing plans based on situation. given input. iv. OC curve-concept, need, and importance, types interpretation of given OC curve. 5.1 Plant layout: Definition and concept. 5a. Explain various types of plant layouts with their Unit-5 5.2 Types of plant layout, their merits, demerits and their applications, advantages and Plant layout application. limitations. 5b. Describe importance and 5.3 Role of material handling systems in and material applications of material handling industries. handling equipment. equipments. 5.4 Material handling equipment-5c. Select material handling Classification, types, specifications, applications and selection criteria. equipments for given situation. 6a. Explain ISO and its role 6.1 International Organization for industries standardization and its role, ISO Unit - 6 in and business. standard series and quality managements system. 6b. Explain TQC and TQM Recent and its applications. 6.2 Total Quality Control (TQC) and trends in industrial 6c. Explain six sigma and Total Quality Management (TQM)-

their

with

Kaizen

engineering.

philosophical concepts.

	6.3 Concept of six sigma and its
6d. Define and explain	applications.
ergonomics.	6.4 Concept and applications of Kaizen.
6e. Explain types of 6	6.5 Definition, objectives and
workloads and show	applications of ergonomics.
normal and maximum 6	6.6 Normal and maximum work area.
work area.	6.7 Environmental requirements of work
6f. Explain environmental	place.
requirements of	
workplace area and	
working conditions.	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			Marks
No.		Hours	R	U	A	Total
			Level	Level	Level	Marks
Ι	Introduction to Industrial Engineering.	4	4	0	2	6
II	Work study.	14	4	6	14	24
III	Quality assurance.	6	4	4	2	10
IV	Statistical Quality Control (SQC).	8	4	4	7	15
V	Plant layout and material handling equipment.	4	4	0	2	6
VI	Recent trends in industrial engineering.	6	7	2	0	9
	Total	42	27	16	27	70

Legends: R = Remember U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- a. If mid-semester test is part of continuous evaluation, unit numbers I, II (Up to 2.9 only), III and V are to be considered.
- b. Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/ programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

G N Unit		Practical Exercises		
S. No. Unit No.		(outcomes in Psychomotor Domain)	Approx Hours.	
	110.		required	
1.	I	Preparatory Activity: a. Prepare the table for values of surface finishes achieved in manufacturing processes. b. Give examples of enhancing productivity. c. Sketch drafting symbols. d. Given the readings, sketch how such can be shown using Vernier and micrometer.		
2.	ALL	Mini Project and presentation: a. Sketch the parts taken in Design of Machine Elements (DME) under Mini project. The batch of DME is to be continued. b. Prepare process plans for each part. c. Prepare flow diagram for each part. Assume institute's workshop layout. d. Present the work including work distribution, photographs and movies of actual project work using power point presentation.		
3.	II	Operation process chart (OPC): Given real mechanical assembly having 6-8 components, prepare operation process chart. (This has to be assigned by teacher). a. Sketch parts and assembly. b. Prepare OPC. c. Prepare process plans for all components. Use format given in Annexure-I.		
4.	ı	Flow diagram(FD): Given real mechanical component having minimum 6-8 mechanical operations, prepare FD. (This has to be assigned by teacher). a. Sketch component. b. Sketch institute workshop layout. c. Prepare FD. Man and machine chart: Prepare man and machine chart for given situation. Teacher		
5.	П	 will assign the real situation. This include: a. List objectives of preparing man and machine chart. b. Describe the situation assigned by the teacher. c. Prepare the man and machine chart. d. Interpret the chart and suggest if any further improvements can be made with respect to enhance productivity. 	02	
6.	II	Performance rating: Calculate co-efficient of co-relation for time study person	02	

_	ı		- I
		using performance rating technique. Teacher will assign the	
		situation. This include:	
		a. Define performance rating.	
		b. Describe the situation assigned by the teacher.	
		c. List the steps followed to perform the exercise.	
		d. Observe and record the observations.	
		e. Plot, interpret and calculate the co-efficient of co-	
		relation.	
		Time study:	
		Calculate standard time for a given job using decimal	
		minute stop watch techniques. Teacher will assign the	
_		situation/job/elements to be recorded. This include:	
7.	II	a. Sketch the part undertaken for time study.	02
		b. List elements to be considered.	
		c. Observe and record elements time.	
		d. List and justify allowances to be taken with values.	
		e. Calculate standard time.	
		Frequency distribution curve:	
		a. Take live problem (may be measured variable	
		dimension, result analysis, etc. (Teacher has to	
		assign the live problem) and summarize the data.	
		b. Perform and prepare frequency table.	
		c. Determine central tendency, spread or dispersion	
8.	III	and range, mode, median and mean standard	02
		deviation and variance.	-
		d. Prepare frequency bar, frequency polygon and	
		frequency curve.	
		e. Plot the areas under normal curve.	
		f. Given the data (Teacher will assign the data),	
		determine numbers/probabilities of acceptance/	
		rejection using normal distribution table- 4 cases.	
		Control charts for variables:	
		a. Define variable. Give five examples.	
0	137	b. For given live problem, determine subgroup size,	02
9.	IV	measure the variable and record the observations.	02
		c. Perform necessary calculations and determine	
_		control limits. d. Plot \overline{X} – R chart and interpret the same.	
		Control charts for attributes:	
		a. Define attribute. Give five examples.b. Explain binomial and Poisson distributions.	
		c. For given live problems (different for different	
10.	IV	charts), determine parameters, record the	02
10.	1 4	observations of attribute.	02
		d. Perform necessary calculations and determine	
		control limits.	
		e. Plot p and c charts and interpret the same.	
		Acceptance sampling:	
a. Show double sampling plan using block diagram.			
11.	IV	b. Prepare/ operate double sampling plans on the basis	02
11.	1 4	of given lot size, AQL, inspection level and other	02
		input for a given problems.	
	<u> </u>	input for a given problems.	

		c. Record the observations and conclude the outcome.	
12.	ALL	Industrial Visit: Visit at least two related industries. Prepare the report as guidelines provided in notes.	-
Total Hours		28	

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.PA component of practical marks is dependent on continuous and timely evaluation of exercises.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Mini project and presentation topic/area has to be assigned to the students in the beginning of the term by batch teacher.
- d. Student activities are compulsory and are part of term work.
- e. Term work content of industrial visit report should also include following.
 - i. Brief details of industry visited.
 - ii. Type, location, products, rough layout, human resource, etc of industry.
 - iii. Details, description and broad specifications of machineries/ processes observed.
 - iv. Safety norms and precautions observed.
 - v. Student's own observation on industrial environment, productivity concepts, quality consciousness and quality standards, cost effectiveness, culture and attitude.
 - vi. Any other details / observations asked by accompanying faculty.
- f. For practical ESE part, students are to be assessed for competencies achieved. They should be assigned the necessary data and should be given any one experience to perform.

8. SUGGESTED LIST OF STUDENT ACTIVITIES.

Sr. No.	ACTIVITY.
1	During Industrial visit for other subjects students should be made familiar
	with various types of material handling equipments used in the industry. They
	should be encouraged to write special reports on material handling
	equipments and type of plant layout in the industries they visited.

9. SPECIAL INSTRUCTIONAL STRATEGIES.

Sr. No.	Unit	Unit Name	Strategies	
1	I	Introduction to Industrial Engineering.	Movies on productivity.	
2	II	Work study.	Movies on work study, live explanation at workshop place, presentations.	
3	III	Quality assurance.	Movies on QA, live cases during industrial visits, power point presentations, failure analysis with rejected live parts.	
4	IV	Statistical quality control	Movies on SQC, performance, live cases	

		(SQC).	during industrial visits, power point
			presentations.
5	V	Plant layout and material handling equipments.	Movies on material handling equipments, industrial visits, power point presentations.
6	VI	Recent trends in industrial engineering.	Movies on trends, presentations.

10. SUGGESTED LEARNING RESOURCES.

A) List of Books.

Sr.No.	Title of Book	Author	Publication
1	Industrial Engineering	C.Natha Muni	New age international
1.	(IE) and Management	Reddy	Publishers.
	Handbook of IE:	Gavriel Salvendy	Institute of Industrial
2.	Technology and	Gavilei Salvelluy	Engineers.
	operations management.		Engineers.
3.	Comprehensive Industrial	M. J Manek	Laxmi Publications (P)
٥.	Engineering.	IVI. J IVIAIICK	Ltd., New Delhi.
4.	Introduction to Work-	George Kanawaty	International Labor
7.	study. ISBN: 9221071081	George Kanawaty	Organisatioin, Geneva.
5.	Introduction to		National Productivity
<i>J</i> .	productivity		Council (NPC).
6.	Method Study		NPC.
7.	Work Measurement	5	NPC.
	Introduction to Statistical		
	quality control. 7th revised	Eugene Grant and	McGraw-Hill Series in
8.	edition	Richard	Industrial Engineering and
	ISBN-13: 978-	Leavenworth	Management
	0078443541		

B) List of Major Equipment/ Instrument with Broad Specifications.

Sr.No.	Major equipment/ Instrument with Broad Specification.	
1	Decimal stopwatch (Non fly back type).	02 pcs.
2	Decimal stopwatch (Fly back type)	02 pcs.
3	Playing cards	2 sets.
4	M.S Pins 10mm dia X 15mm length with tolerance of ± 0.01mm.	100 pcs.
5	Buttons of 6 different colors.	100 of each color.
6	Sampling rack with 1000 washers	1 set.

C) List of Software/Learning Websites.

- i. http://en.wikipedia.org/wiki/Industrial_engineering
- ii. http://www.iiie-india.com/IIIE/industrial-engineering.php
- iii. http://www.youtube.com/watch?v=3WmfSfNJr4w (How Receiver Operating Characteristic Curves Work ...)
- iv. http://www.youtube.com/watch?v=J17SUDcrphw (How to construct an operating characteristic (OC) curve)

- v. https://www.coursera.org/course/apstat (basics of statistics)
- vi. http://www.youtube.com/view_play_list?p=299B5CC87110A6E 7 (Lecture Series on Industrial engineering NPTEL)
- vii. http://www.massey.ac.nz/~mbjones/Book/Chapter11.pdf reading material on statistics) (

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- R.R.MAHITCHA, Retired Lecturer in Mechanical Engineering, T.F.G Polytechnic, Adipur.
- P.V.JETHVA, Lecturer in Mechanical Engineering, L.E. College, Morbi.
- R.M. RAJYAGURU, Lecturer in Mechanical Engineering. GP, Porbandar.

Coordinator and Faculty Members from NITTTR Bhopal.

- **Prof. S.K.Pradhan**, Associate Professor, Mechanical Engg. NITTTR, Bhopal
- Dr. A.K.Sarathe, Associate Professor, Mechanical Engg. NITTTR, Bhopal

ANNEXURE-I

FORMAT FOR PROCESS PLANNING

NAME OF COMPONENT:	MATERIAL AND RAW MATERIAL SIZE:	QUANTITY / BATCH:

	DETAILS OF OPERATION		CUTTING TOOLS , HOLDING	CUTTING PAR CUTTING SPEED	RAMETERS FEED	DEPTH OF CUT	SETTING TIME	OPERATION TIME
OP.NO.		MACHINE	TOOLS, MEASURI NG TOOLS USED	RPM / NO. OF STROKES	(mm / rev OR mm / min)	mm	Min	Min
		eis.						
	e state of the sta							

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Code: 3351905

COURSE CURRICULUM COURSE TITLE: ESTIMATING, COSTING AND ENGINEERING CONTRACTING (COURSE CODE: 3351905)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering	5 th Semester

1. RATIONALE

This course is designed to develop the ability in the students to evaluate materials, consumables and process costs in the monetary units. Hence, it will help to increase the productivity of the organization and conservation of valuable resources. This course will also help in developing the skills required in the process of decision making and to plan, use, monitor and control resources optimally and economically. This will also be helpful in budgeting. The realm of this course is enlarged to estimate the process costs for fluid and thermal applications also.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

- Plan, use and control resources optimally and economically.
- Estimate production/operation cost for budgeting and analysis.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning objectives in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Calculate material cost of given component/product.
- ii. Identify and estimate elements of cost in various processes.
- iii. Perform break even analysis to calculate break even quantity.
- iv. Investigate the problem of cost and suggest their solution using cost reduction techniques.
- v. Interpret given model of balance sheet and profit loss account.
- vi. Prepare simple engineering contracts.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ng Schen	ne	Total	Examination Scheme								
(In Hours)			Credits (L+T+P)	Theory Marks		Theory Marks		Theory Marks		Practica Marks	al	Total Marks
L	Т	P	C	ESE	PA	ESE	PA					
2	0	2	4	70	30	20	30	150				

5. COURSE DETAILS

Unit	Major Learning Outcomes (in cognitive domain)		Topics and Sub-topics
	1a. Explain the terminology of	1.1	Need, Scope & importance of ECC
Unit – I	ECC- cost elements,	1.1	in industries.
	overheads, selling price	1.2	Difference between costing and
Introduction.	and catalogue price.	1.2	estimating.
	1b.Explain need, scope &	1.3	Terminology associated with
	importance of ECC in		various cost elements and their
	industries.		classification.
	1c.Compare costing and	1.4	Terminology associated with
	estimating.		overheads, their classification and
	C		allocation.
		1.5	Determination of selling price and
			catalogue price.
	1d. Select appropriate method	1.6	Depreciation and obsolescence:
	of depreciation and	4	Definition, types, different
	calculate it.	\sim	methods of calculating
		9	depreciation, numeric examples.
	1e. Calculate machine hour	1.7	Concept of Machine Hour Rate
	rate (MHR) and process		(MHR) and process hour rate
	hour rate (PHR).	_	(PHR).
		1.8	Method to calculate MHR for any
			machine/machine tool.
		1.9	Method and example to calculate
	•		MHR of Lathe, Milling, Drilling,
	26		Grinding and Press tool.
		1.10	Method to calculate PHR for any
	03		process.
		1.11	Method and example to calculate
			PHR of running diesel generating
			set, running air conditioner,
			running refrigerator, welding and
	2- 61	0.1	gas cutting.
Ilmit II	2a. Classify costs.	2.1	Classification of costs as fixed and variable costs.
Unit – II Break even		2.2	Relationship between the costs
analysis.		2.2	and quantity of production.

	2b. Construct break even	2.3	Break Even Chart :
	chart and determine break	2.3	
	even quantity from given		Point (BEP) and its needs in
	data.		industry.
			ii. Procedure of construction of
			Break Even Chart.
			iii. Assumptions made in
			constructing Break even
			chart.
			iv. Calculation of BEP
			analytically and graphically.
			v. Margin of safety, its
			importance and its
			derivation.
			vi. Effect of changing various
			parameters on BEP.
			vii. Numeric examples.
_	20 List Footons offooting and	2.1	-
TT .4 TTT	3a. List Factors effecting arc	3.1	Elements of cost in arc welding.
Unit –III	welding cost	3.2	Factors effecting arc welding
	3b.Estimate cost of		cost.
Cost	consumables and	3.3	Estimating cost elements for:
estimation of	production for gas cutting	(Z)	i. Consumables in arc
welding.	and welding of a given		welding and gas cutting.
	job.	7	ii. Gas cutting.
		•	iii.Arc welding.
		3.4	Estimation of production cost of
			given welding job for above
			methods.
	4a. Estimate cost of material,	4.1	Cost terminology associated with
Unit –IV	forging dies and		forging shop.
	production cost for a	4.2	The procedure of calculating
Cost	forging component.		material cost of a product for
estimation of			forging shop (including input
forging and			weight, cut weight, forged weight
casting.			etc.).
custing.	9 *	4.3	Procedure of estimating cost of
	7	1.5	forging dies.
		4.4	Procedure of estimating forging
		7.7	cost.
	4h Estimata aget of material	4.5	Given the forged component,
	4b. Estimate cost of material,	4.3	
	pattern and production for	1.0	estimate forging cost.
	a casting component.	4.6	Cost terminology associated with
		4.7	foundry shop.
		4.7	The procedure of calculating
			material cost of a product for
			foundry shop.
		4.8	Procedure of estimating cost of
			pattern making.
		4.9	Procedure of estimating foundry
			cost.
		4.10	Given the casting component,
			estimate foundry cost.

	5a. Estimate the machined	5.1	The terminology associated with
TI:4 T7		3.1	<u> </u>
Unit –V	part cost for lathe,	5.0	machine shop estimation.
G4	drilling, milling and	5.2	Procedure to estimate material
Cost	shaping operations.	<i>5</i> 2	cost.
estimation of		5.3	Procedure of estimating cost of
machined			machined part for following
part.			operations:
			i. Lathe operations (Facing,
			outside/inside turning,
			boring, drilling on lathe,
			grooving and out side
			threading).
			ii. Drilling operations (Drilling,
			reaming, tapping).
			iii.Shaping operations.
			iv. Milling operations (Face
			milling, side and face cutting,
			end milling, key way milling
		4	and gear forming).
		Δ	v. Cylindrical grinding
		W	operations (Plain cylindrical
		5.4	grinding). For given machined part, estimate
		3.4	material cost and machining cost.
	6a. Identify the elements	6.1	Understand importance of
Unit – VI	required to estimate the	0.1	estimating various process costs.
Omt – VI	process cost.	6.2	Procedure and steps to estimate
Estimation	6b. Estimate the cost of	0.2	cost for following processes:
of process	processes required based		i. Producing power using
cost.	on given set of input.		diesel generating set (cost
Cost.	on given set of impact		per hour and cost per unit).
			ii. Power produced at thermal
			power plants. (Cost per
_ 4			unit).
			iii.Pouch packaging.(Cost per
			pouch).
			iv. Heat exchanger, cooling or
			heating.(Cost per hour).
			v. Ice plant.(Cost per unit
			weight).
		6.3	Given the required set of input,
			estimate the cost of processes
			specified above.
	7a. Explain various budgetary	7.1.	Define budget and budgetary
Unit – VII	and accounting		control.
	terminologies.	7.2.	Purpose of budget.
Budgeting	7b.Prepare simple budget.	7.3.	Various types of budgets.
and	7c.Interpret given contract	7.4.	Benefits of budget.
contracting.	terms and conditions.	7.5.	With given example, interpret
	7d.Select parameters, terms		industrial budget.
	and conditions to be	7.6.	Prepare simple budget given

	T
included in contract.	required input data.
	7.7. Explain various accounting
	terminology like book value, Net
	Present Value, Work in progress,
	Gross Domestic Product
	(GDP),balance sheet terminology,
	etc.
	7.8. Define contracts, its
	characteristics and advantages.
	7.9. Types of contract.
	7.10. Tendering, manual tendering and
	E-tendering.
	7.11. Provision of different conditions
	in a contract.
	7.12. Documents required in an
	engineering contract (explain).
	7.13. Prepare a contract for a given
	input situation.

Course Code: 3351905

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit	Unit Title	Teachin	Distribution of Theory Marks				
No.		g Hours	R	U	A	Total	
	п		Level	Level	Level	Marks	
I	Introduction.	3	4	0	0	4	
II	Break even analysis.	3	2	2	4	8	
III	Cost estimation of welding.	3	2	2	4	8	
IV	Cost estimation of forging and casting.	6	4	4	7	15	
V	Cost estimation of machined part.	5	4	4	7	15	
VI	Estimation of process cost.	4	3	3	4	10	
VII	Budgeting and contracting.	4	3	3	4	10	
		28	22	18	30	70	

Legends: R = Remember U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- a. If midsem test is part of continuous evaluation, unit numbers I, II, III and V are to be considered.
- b. Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

		Practical Exercises	Approx
S. No.	Unit	(outcomes in Psychomotor Domain)	Hours.
S. 140.	No.	(outcomes in Psychomotol Domain)	
			required
1.	I	 Preparatory activity: a. Write various equations to calculate area and volume of commonly used shapes. b. List densities of commonly used materials. c. Machining process parameters of various manufacturing processes (Covered in this course) for commonly used materials. d. Collect market rates for various consumables like diesel, welding rods, gas, cutting tools, electricity rates, etc. to be used in this course. 	02
2.	III, IV,V, VI	Collect the finished parts from industries/market/scrap merchants consisting: i. Welded parts (Minimum THREE). ii. Casted parts (Minimum THREE). iii. Forged parts (Minimum TWO). iv. Parts having five to six machining operations like cutting, turning, threading, grinding, milling, shaping, drilling, etc.(Minimum FIVE). b. Measure and prepare production drawings of all the parts using A4 size paper (Manually). Note: Each student will be assigned to bring at least one specified part so that all varieties of about 13 parts get collected in a batch. All parts must be brought in first week duration only. After getting approval of part, each student will prepare production drawing of the part he/she has brought on an A4 size paper (manually) and then the batch will interchange these drawing so that all students will have drawing of all physical parts collected by	02

		the batch.	
		Welding estimation:	
		a. Determine raw material volume for all welded parts.b. Select welding rod to be used. Estimate quantity of welding rod required.	
3.	III	c. Determine material and consumables costs.d. For each part, estimate welding cost. Show the assumptions and steps followed to estimate welding cost.	02
		e. Derive total cost of the part.	
		Casting estimation:	
		 a. Determine raw material volume for all casted parts (calculate input weight, cut weight, net weight, losses etc.). 	
4	TV.	b. Prepare pattern drawings (production drawings with all dimensions, surface finishes, allowances, etc.)	0.4
4.	IV	for all parts.	04
		c. Estimate pattern cost.d. Determine material and consumables costs.	
		e. For each part, estimate casting cost. Show the	
		assumptions and steps followed to estimate casting	
		cost.	
		f. Derive total cost of the part.	
		Forging estimation:	
		a. Determine raw material volume for all forged parts.	
		b. Prepare die drawings (production drawings with all	
		dimensions, surface finishes, allowances, etc.) for	
		all parts.	
5.	IV	c. Estimate dies cost.	04
		d. Determine material and consumables costs.	
		e. For each part, estimate forging cost. Show the	
		assumptions and steps followed to estimate forging	
		cost. f Derive total cost of parts	
		f. Derive total cost of parts.	
		Machining estimation:	
	1	a. Determine raw material volume for all machined parts.	
		b. For each part, tabulate operation, cutting tool/s to be	
		used and cutting parameters (speed, feed and depth	
6.	V	of cut) to be used.	06
		c. Estimate raw material cost.	
		d. For each part, estimate machining cost. Show the	
		assumptions and steps followed to estimate	
		machining cost.	
		e. Derive total cost of parts.	
		Process estimation:	
		a. Teacher will assign the input data. Estimate hourly	
7.	VI	rate of running diesel generating set. Show the	04
		assumptions and steps followed to estimate the rate.b. Teacher will assign the input data. Estimate hourly	
		rate of running ice plant. Also estimate the rate to	
	Î	Tate of faming for plant. This estimate the fate to	

		produce a Ton of ice with same data. Show the assumptions and steps followed to estimate the rate. c. Teacher will assign the input data. Estimate hourly rate of running heat exchanger. Show the assumptions and steps followed to estimate the rate. d. Teacher will assign the input data. Estimate unit rate of thermal power plant. Show the assumptions and steps followed to estimate the rate.	
8.	ALL	 Mini Project and presentation: a. Sketch the parts taken in Design of Machine Elements (DME) under Mini project. The batch constituted in DME course is to be continued. b. Prepare process plans for each part. c. Estimate the material, consumables and manufacturing process (May be welding, forging, casting, machining, etc.) costs (as applicable). Also prepare required pattern/die drawings and estimate cost of them (if applicable). d. Estimate cost of parts and assembly. Show the assumptions and steps followed to estimate the costs. e. Present the work including work distribution, photographs and movies of actual project work using power point presentation. 	04
		Total Hours	28

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher. PA component of practical marks is dependent on continuous and timely evaluation of exercises.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student himself.
- c. Mini project and presentation topic/area has to be assigned to the students in the beginning of the term by batch teacher.
- d. Student activities are compulsory and are part of term work.
- e. For practical ESE part, students are to be assessed for competencies achieved. They should be given physical part/s and should be asked to estimate the material and process cost.

8. SUGGESTED LIST OF STUDENT ACTIVITIES.

Sr.No.	ACTIVITY.
1	Do market survey and find prevailing hourly rates of lathe, milling and
	drilling machines.
2	Do market survey and find prevailing hourly rates of renting diesel generating
	sets. Specify output (HP or kW).
3	Do market survey and find prevailing rates of commonly used engineering
	materials like MS, brass, copper, stainless steel, Aluminum, etc.

9. SPECIAL INSTRUCTIONAL STRATEGIES.

Sr.No.	Unit	Unit Name	Strategies.
1	I	Introduction	Power point presentations, live examples.
2	II	Break even analysis	Demonstration of method to construct with
			live examples.
3	III	Cost estimation of	Demonstration of method to estimate cost
		welding	taking live demonstration at work shop place,
			steps based handouts.
4	IV	Cost estimation of	Demonstration of method to estimate cost
		forging and casting	taking live examples,, live demonstration at
			work shop place, steps based handouts.
5	V	Cost estimation of	Demonstration of method to estimate cost
		machined part	taking live examples, live demonstration at
		macmiled part	work shop place, steps based handouts.
6	VI	Estimation of	Live examples, demonstration at site, steps
		process cost	based hand out.
7	VII	Budgeting and	Power point presentations, live examples.
		contracting	49

10. SUGGESTED LEARNING RESOURCES.

A) List of Books.

Sr. No.	Title of Book	Author	Publication
1.	Mechanical estimating and costing.	Banga and Sharma	Khanna
1.			Publishers.
2.	Mechanical estimating and costing.	Shrimali and Jain	Khanna
2.			Publishers.
3.	Mechanical costing and estimation.	Singh and Khan	Khanna
٥.			Publishers.
4.	Learning package in ECC.	NITTTR, Bhopal	NITTTR,Bhopal.

B) List of Major Equipment/ Instrument with Broad Specifications.

- i. Vernier caliper, 150mm.
- ii. Micrometer, 0-25mm and 25-50mm.
- iii.Bevel protector.
- iv. Thread gauges.

C) List of Software/Learning Websites.

i. http://calculatoredge.com/index.htm#mechanical

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- A.M.TALSANIYA-Lecturer in Mechanical Engineering, Sir BPI, Bhavnagar.
- R.M. RAJYAGURU, Lecturer in Mechanical Engineering. GP, Porbandar.

Coordinator and Faculty Members from NITTTR Bhopal:

- **Prof. S.K.Pradhan,** Associate Professor, Mechanical Engg. NITTTR, Bhopal.
- Dr. A.K.Sarathe, Associate Professor, Mechanical Engg. NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: SELF EMPLOYEMENT AND ENTREPRENEURSHIP DEVELOPMENT (COURSE CODE: 3351906)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering	5 th Semester

1. RATIONALE.

The emerging concept of self-reliance at individual and national level - has significant impact on current developing economy. Future social expectations towards engineering professionals would be certainly as job creators and not as purely job seekers. Upgraded technological and changing economic environment has opened up wide horizons of business areas-including in service sectors too. This course deals with the key concern areas of self-employment and entrepreneurship development. This course is directed to help students to develop and shape their creativity and to understand peripheral influencing aspects. The content will certainly help students to think in a direction to establish a new enterprise using fundamental knowledge.

2. LIST OF COMPETENCY.

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

- Develop entrepreneurship and self-employment abilities to start any venture
- Plan, use, monitor and control resources optimally and economically.

3. COURSE OUTCOMES.

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify entrepreneurial quality.
- ii. Develop the ability to select potential areas for self-employment.
- iii. Select appropriate agency / ies for technical and financial support.
- iv. Prepare project setup planning and project report.
- v. Explain SWOT analysis and strategies to achieve goals.
- vi. Identify risk factors of project and their remedial measures.

4. TEACHING AND EXAMINATION SCHEME.

Teaching Scheme			Total	Examination Scheme				
(In Hours)		Credits (L+T+P)	Theory Marks		arks Practical Mark		Total Marks	
L	Т	P	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning	Topics and Sub-topics
	Outcomes	
	(in cognitive domain)	
	1a. Appreciate the	1.1 Introduction of self-employment
Unit – I	need of self-	i. Concept and need in present Indian
Introduction to	employment and	job market context.
Introduction to	entrepreneurship development.	ii. Characteristics of self-employment
self-employment and	1b. Explore inner	areas for mechanical engineering field. iii. Broader ways to identify self-
entrepreneurship	creativity and	employment areas in mechanical
development.	innovativeness in	engineering.
development.	identifying areas	1.2 Creativity- concept, examples related to
	for self-	applications in mechanical engineering,
	employment and	ways to develop.
	entrepreneurship	1.3 Innovativeness- concept, examples related
	development.	to applications in mechanical engineering,
	1	ways to develop.
		1.4 Entrepreneurship development:
		i. Concept and need.
		ii. Scope in local and global market.
		iii. Qualities of entrepreneur and
		Characteristics of Diploma holder as a
		self-employer like developing
	A.	networking and personal contacts,
		communication skills, transferable
	٠, ٥	work skills, positive work skills,
		conflict resolution, professional dress,
		workplace legal issues, work ethic, etc.
	0.7	1.5 Concept and importance of productivity,
		quality, cost consciousness and customers'
		satisfaction.
		1.6 Types of enterprise-
		i. Sole partnership.
.4.7		ii. Partnership firm.
		iii.Joint stock company.
		iv.Co-operative society.
(3)	2a. Know registration	2.1. Definition – Micro, small and medium
Unit II	process/	industries.
	procedure for	2.2. Registration process of an enterprise with
Entrepreneurial	enterprise.	Government agencies.
support	2b. Explore the	2.3. Name, type and role of state and national
agencies.	avenues for	level support agencies for:
	getting beneficial	i. Sources of information.
	promotional	ii. Financial assistance.
	schemes for	iii.Technical assistance.
	establishment of	iv. Training.
	new enterprise.	2.4 Current state & national level promotional
		schemes for establishment of new

Unit	Major Learning	Topics and Sub-topics
	Outcomes	
	(in cognitive domain)	
		enterprise
** **	3a. Understand	3.1 Product (Physical and service both-having
Unit – III	process of product	mechanical features) selection:
D • 4 4	selection and	i. Concept and importance
Project set up	stages of product	ii. Product selection
planning.	development.	iii.Effect of competitive or similar types
	3b. Select appropriate	of products on product selection
	process	iv. Product development stages.3.2 Process Selection:
	considering productivity.	
	3c. Determination of	i. Concept and importance.ii. Factors affecting process selection.
	capacity based on	iii. Technology life cycle.
	identified product	iv. Productivity-concept & importance.
	& process.	v. Flexibility.
	3d. Select proper	3.3 Process Conversion- Capacity Planning:
	location and	i. Concept.
	prepare suitable	ii. Importance.
	plant layout.	iii.Basic method to assess / estimate
	T	capacity.
		3.4 Selection of location and layouts:
		i. Concept.
		ii. Factors affecting selection of location.
	A.	iii.Objectives and types of plant layout.
		iv. Factors affecting plant layout.
	4a. Describe the	4.1 7-M resources.
Unit – IV	Management of	4.2 Marketing- definition, need for enterprise,
	the critical	4Ps channels (product, price, place and
Project proposal	resources.	promotion).
planning.	4b. Define	4.3 Market survey-concept, need and methods.
_	Marketing.	4.4 Managing finance:
	4c. Explain need for enterprise, 4Ps	i. Terminology used in financial
4.1	channels	management. ii. Concept of financial statement and
	(product, price,	types (balance sheet, profit & loss
	place and	statement and funds flow statement).
	promotion).	4.5 Project report preparation for mechanical
(4)	4d. Prepare	feature based product:
	preliminary and	i. Meaning of project planning and
	detailed project	report.
	report.	ii. Feasibility study.
	-	iii.Details required for preparing project
		plan.
		iv. Project cost estimation.
		v. Cost, Volume and Profit (CVP)
		analysis.
		vi. Preliminary project report (PPR) and
		detailed project report (DPR).

Unit	Major Learning	Topics and Sub-topics			
	Outcomes				
	(in cognitive domain)				
	5a. Know strategies	5.1 Concept of risk in the context of enterprise			
Unit – V	to overcome risk	/ project.			
	areas.	5.2 Uncertainty and certainty of project			
Enterprise and		elements.			
risk		5.3 Decision making under risk.			
management.		5.4 Methods of risk management.			
		5.5 Strength, Weakness, Opportunity and			
		Threat (SWOT) analysis.			
	6a. Analyze success	6.1 Case studies of entrepreneur and self			
Unit – VI	and failures of	employer. : (at least two for success and			
	entrepreneur &	two for failure.)			
Case studies.	self employer and	i. Important features.			
	integrate positive	ii. Reasons for success and failures.			
	conclusions.	iii.Analyzing success and failure criteria.			
		iv.Integration of case analysis			
		conclusions in enterprise management			
		for improvement.			

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY).

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.		Hours	R	\mathbf{U}	A	Total	
			Level	Level	Level	Marks	
I	Introduction to self-employment	8	8	2	4	14	
	and entrepreneurship development.	0	0	2	4	14	
II	Entrepreneurial support agencies	5	6	2	0	8	
III	Project set up planning.	10	4	8	4	16	
IV	Project proposal planning.	8	3	4	7	14	
V	Enterprise and risk management.	5	2	4	2	8	
VI	Case studies.	6	0	0	10	10	
	Total	42	23	20	27	70	

Legends: R = Remember U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

General Notes:

- a. If mid semester test is part of continuous evaluation, unit numbers I, III (Up to 3.3 only) and IV are to be considered.
- b. Ask the questions from each topic as per marks weight age. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr. No.	Unit No.	Practical Exercises (outcomes in Psychomotor Domain)	Approx Hours. required
1	ALL	Preparatory activity: a. List various types of industries. b. Narrate need of self employment. c. Anticipate importance of entrepreneurship development.	2
2	I	a. Teacher will assign any one mechanical feature based (in a group of not more than 5-6 students) item/product,(may be pen, gear, mouse, notebook, chair, table, fan, mobile, bicycle, etc.). List at least ten uses of this item/product other than pre-defined. Think out of box. b. Teacher will assign any one mechanical feature based (in a group of not more than 5-6 students) process, product or service, tangible or intangible, (may be milk packaging, service offers, camera, farm equipments, machine tools, automobiles, tools, travelling bags, material handling, logistics, construction, customer services, etc.), List at least ten innovations of assigned process, product or service. Imagine out of box. c. List at least ten mechanical engineering products which have passed through innovativeness.	4
3	I	 Identification of self-employment areas: a. Teacher will assign this exercise in group of 5-6 students. b. List at least five mechanical feature based areas which have, in group's opinion, self-employment potential. Select any one promising area. c. Develop market survey format for the selected area. d. Perform market survey for self-employment 	4

		opportunities. e. Describe the outcome. Also narrate the experience. f. It is compulsory to attach photographs of group conducting market survey.	
4	II	Visit report: a. Visit nearby: i. District Industries Centre (DIC). ii. Any one financial institution including bank. iii. Training institute / GITCO/EDI/ iNDEXTb/etc. b. Prepare the visit report which include followings: i. Brief history of organization. ii. Type and details of services /support/ assistance being given. iii. Any other information which are useful to be self-employer or entrepreneur. iv. Brochures/technical literature collected from agencies.	4
5	III and IV	 Preparing project feasibility report of assigned product: a. Teacher will assign any one product (physical or service based having mechanical features) to the group of 5-6 students. b. Prepare project feasibility report (Technical and financial). Specifically include capacity requirement calculations and project set up planning details. Also present the same to whole batch. 	8
6	VI	Case analysis and presentations: a. Teacher will assign one case of successful entrepreneur and one case of failed entrepreneur to the group of 5-6 students. Student will discuss in group, will analyze and will present the same to whole batch. Student will also prepare the report on analysis. Case may be put up with printed pages but analysis has to be hand written.	6
	. 5	Total Hours	28

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.PA component of practical marks is dependent on continuous and timely evaluation of exercises.
- b. Term work report must not include any photocopy, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. For practical ESE part, students are to be assessed for competencies achieved.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

The student activities are same as given in list of practical/exercises. Teacher may give more such activities to interested/bright students.

9. SPECIAL INSTRUCTIONAL STRATEGIES (IF Any)

During practical exercises teacher should not prescribe solutions to students and should motivate them to come out with different alternatives (even if they may not be feasible) and should allow them to try and learn on their own from their mistakes. Teacher should help students only when they are completely stuck.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Developing Entrepreneurship		Pareek & Co. Learning systems, Delhi.
2.	Entrepreneurship & Venture - Management	Clifford and Bombak, Joseph R. Momanso.	C
3.	Planning an Industrial unit	J. N. Vyas.	o°
4.	Small Industries management	Karmakar M.B.	
5.	Manual for the preparation of industrial - feasibility studies	0	UNIDO
6.	New project opportunities		GITCO
7.	Creativity	Pradeep Khandwala	
8.	Project profile for reserved - Development commissioner SSI,Items - VOl, I, II & III New Delhi. Small scale industry - Ministry of Industry Govt. of India. Policy & Perceptive, Dialogue with the Entrepreneur – GSFC, Import-Export Policy for SSI - Govt. of India.	GOVERNMENT PUBLICATIONS.	GOVERNMENT PUBLICATIONS.
9.	EDI STUDY MATERIAL	EDI, BHAT, Ahmedabad	Website: http://www.ediindia.org
10.	Entrepreneurship development and Management	R.K.Singal	S.K.Kataria and Sons.

B) List of Learning Websites.

- i. http://www.ediindia.org
- ii. http://niesbud.nic.in/docs/SelfEmploymentBook.pdf
- iii. http://smallb.in/
- iv. http://www.msme.gov.in/
- v. http://nimsme.org/
- vi. http://www.nsic.co.in/

- vii. http://iie.nic.in/
- viii. http://msme.gov.in/guidelines_pmegp_24092008.pdf
 - ix. http://www.gujagro.org/pdf/guidelines.pdf
 - x. http://www.entrepreneurshipsecret.com/8-factors-to-be-considered-in-products-selection/#sthash.goWj3LcV.dpbs

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics.

- **Prof. R.B.Patel**, Lecturer in Mechanical Engineering, RCTI, Ahmedabad.
- **Prof. A.M.Talsaniya**, Lecturer in Mechanical Engineering, Sir BPI, Bhavnagar.
- **Prof. Patel Kalpesh P.**, Head of Mechanical Engineering, B.S.Patel Polytechnic, Kherava.
- **Prof. Patel Shailesh Kantilal**, Head of Mechanical Engineering, Swami Sachidanand Polytechnic College, Visnagar.

Coordinator and Faculty Members from NITTTR Bhopal.

- **Prof. S.K.Pradhan,** Associate Professor, Mechanical Engg. NITTTR,Bhopal
- Dr. A.K.Sarathe, Associate Professor, Mechanical Engg. NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Code: 3351907

COURSE CURRICULUM

COURSE TITLE: OPERATIONS MANAGEMENT AND INFORMATION SYSTEMS (COURSE CODE: 3351907)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering	5 th Semester

1. RATIONALE

On one hand, the revolution of information technology has forced mechanical operations based. industries to integrate this technology in their day to day operations and on another hand, optimum utilisation of resources with quality objectives has become base for survival. This course will develop in the students the abilities to search for better solutions for any operating problems/situations by logical thinking and to develop analytical skill by learning important operation management techniques. The routine work and routine systems are being handled by the people at the operating level in industries with integration of computers and operations management philosophy. The stress is given on operations management, cost effectiveness and quality aspects with computer based information systems, which are required in day-to-day operations in industries for smooth and efficient operations. Proper and rapid flow of information improves the decision making process and the industrial relations as a consequence

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able: to acquire following competencies

- Plan, use, and control resources optimally and economically.
- Interpret and operate simple information systems in a given situation.

3. COURSE OUTCOMES.

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Perform various tasks like market survey, demand forecasting, shop floor and plant supervision, etc.
- ii. Utilize resources optimally and efficiently.
- iii. Implement and monitor data base management systems for mechanical based industries.

4. TEACHING AND EXAMINATION SCHEME.

Teaching Scheme			Total		Examination Scheme			
	(In Ho	urs)	Credits (L+T+P)	Theory Marks		heory Marks Practical Marks		Total Marks
L	Т	P	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

5. COURSE DETAILS

Unit	Major Learning	Topics and Sub-topics		
	Outcomes	•		
	(in cognitive domain)			
Unit – I.	1a. Describe operations management and	1.1 Operations management: concept, meaning, definition, scope and functions.1.2 Optimization: concept, meaning, definition,		
Introduction.	information	need and scope.		
	system in mechanical based	1.3 Types of production, their merits and demerits.		
	industries. 1b. Explain	1.4 Types of operations layouts: - types, features, applications.		
	Optimization:	1.5 Types of resources (7M).		
	concept need and	1.6 Data-meaning and types.		
	scope.	1.7 Information-meaning and types.		
	1c. List types of	1.8 Information system: need, concept, definition, features, objectives and		
	production, their merits and	definition, features, objectives and examples.		
	demerits.	1.9 Need to integrate information systems and		
	1d. List types of	optimum utilization of 7M resources.		
	operations			
	layouts: - types,			
	features,			
	applications.			
	1e. Explain concept and importance			
	of information			
	systems.			
	1f. List types of			
	resources (7M).			
	2a. Calculate future	2.1 Demand forecasting- Definition,		
Unit – II	demand of the	importance, types for new products and		
	product.	established products, and their features and		
Marketing.	2b. Survey market	applications.		
(5)	for given product. 2c. Show the attitude	2.2 Time series analysis: features, types (This includes simple average, simple moving		
	to work as	average and weighted moving average) and		
	service engineer.	examples.		
	2d. Explain Concept,	2.3 Market survey-importance and methods.		
	need and	2.4 Marketing channels-types and applications.		
	maintenance of	2.5 Service after sales-importance, need of		
	customers' data	technical know-how, ways and methods,		
	by using	attitude attributes as service engineer,		
	Customer	examples of better sales and service set up.		
	Relationship Management	2.6 Concept, need and maintenance of customers' data by using Customer		
	Management	customers data by using Customer		

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
	(CRM) method / technique.	Relationship Management (CRM) method / technique.
Unit – III Supervision with cost & quality control	3a. Develop the concept to optimize utilization of 7M resources at shop floor/plant level. 3b. Define quality and various quality fads. 3c. Familiarize with TQC, TQM, ISO 9000 and other quality systems in current use. 3d. Construct simple house of matrix using QFD. 3e. Explain pareto analysis. 3f. Establish relationship between cost and quality. 3g. Establish relationship between rejection, cost	 3.1 Importance of productivity, quality and cost saving during shop floor and plant supervision. 3.2 Qualities of good supervision at shop floor and plant level to optimise 7M resources utilisation. 3.3 Quality- Evolution of various quality definitions. 3.4 Definitions of quality policy, quality systems, quality management, quality control, (QC) quality circle, quality assurance (QA), and SQC. 3.5 Quality circle-concept, methodology and benefits with example. 3.6 Philosophical concept, meaning, importance with respect to employee leadership, customer satisfaction, quality, and Total Quality Management (TQM). 3.7 Introduction to quality system standards (ISO9000, BS 14000 and current with its area of application. 3.8 Quality Function Deployment (QFD)-concept, method to construct house of quality, examples. 3.9 Correlation between rejection, rework, cost and quality. 3.10 Pareto analysis-concept and examples.
Unit – IV Data base management system.	and quality. 4a. Develop familiarity with objectives and need of data base management systems and software available in the market. 4b. Prepare RDBMS using database management system software.	 4.1 Data management-concept, need, basic terminology used. 4.2 Data base: definition, meaning, importance, approach and architecture. 4.3 Objectives of database organizations. 4.4 Data models: meaning, relationship and association, drawing schema, bubble chart &tree structure for suitable mechanical engineering application. 4.5 Data Base Management System (DBMS) - definition, scope, importance, awareness about current software packages & their features , 4.6 Relational Data Base Management System

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
		(RDBMS) - concept, definition, features
		and applications.
		4.7 Preparation steps/ procedure for creating,
		storing, editing & retrieval of database on
		latest available database management
		software package. (MS Access or other in
	5 D 1 1 1	current use).
TT\$4 T 7	5a. Develop simple	5.1 Role of computers in information systems.
Unit – V	data base information	5.2 Management Information System (MIS); concept, definition, need & applications.
Information	system for given	5.3 Computer aided information systems :
systems.	input.	such as inventory records, operation
systems.	5b. Demonstrate	schedule, consumables issues, tools
	suitable	issues, inspection and quality control
	communication	reports, failure frequencies with reasons,
	media for	efficiency and utility reports, maintenance
	implementation	records, produced power units per day,
	of data base	temperature at certain interval, etc):
	management	need, importance, design considerations,
	systems.	software selection criteria, examples.
		5.4 Information communication: -
		Communication process; computer
	_	networks and its types, structures, need
	. 0	and applications, protocols - types,
		features, applications.
		5.5 Communication media – types, features,
	-69	benefits for industrial environment,
	0,	working (this includes Internet and Intranet, E-mail, etc.).
		5.6 Basics of Enterprise Resource Planning
		(ERP)

6.SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit	Unit Title	Teachin	Distri	Distribution of Theory Marks			
No.		g Hours	R	\mathbf{U}	A	Total	
			Level	Level	Level	Marks	
I	Introduction.	6	4	6	0	10	
II	Marketing.	8	6	4	4	14	
III	Supervision with cost & quality	10	7	4	5	16	
	control.						
IV	Data base management systems.	10	7	4	5	16	
V	Information systems.	8	0	4	10	14	
	Total	42	24	22	24	70	

Legends: R = Remember U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Code: 3351907

General Notes:

- a. If midsem test is part of continuous evaluation, unit numbers I, II and III (Up to 3.7 only) are to be considered.
- b. Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr. No.	o. Unit No. Practical Exercises (outcomes in Psychomotor Domain)		Approx Hours. required
1	I	Preparatory activities: Student will practice and prepare the report on following. a. Importance of attitude and information systems in day to day operations of shop floor/plant. b. Objectives of learning this subject. c. Definitions and illustrations of system, data and information. d. Attitude dos and don'ts as supervisor on shop floor/plant.	2
2	II	Forecasting: Teacher will assign the data. Student will practice and prepare the report on solution steps of three forecasting problems, one each from simple average, simple moving average and weighted moving average.	2
3	II	Market survey, sales and service: Student will practice and will prepare report on following. a. Teacher will assign any one mechanical engineering product in the group of 3 to 4 students and will develop market survey form/steps. Student will carry out market survey and will conclude the results of market survey. Students will also present the conclusion. b. Teacher will assign any one mechanical engineering	6

		1	
		product in group of 3 to 4 students. Students will visit related shops/traders/industry and will get information on sales schemes and the service steps being executed.	
4	III	 Quality circle: Teacher will assign the case to be solved in quality circle in the group of 3-4 students. Group will practice and prepare the report on following. a. Reproduce the case. b. List the objectives to be solved. c. Viewpoints of each member. d. Group discussion on view points of each member listing the merits and demerits of each. e. Suggestive outcome/s of the quality circle group. f. Benefits sought if suggestive outcome/s of group is /are implemented. 	2
5	V	 Management information system: Student will practice and will prepare report on following. a. Select and name data base management system software. b. List and explain features of selected data base management software. c. Explain how data entry, editing, sorting and retrieval are performed in selected data base management system software. d. Teacher will assign the input data. Based on this, prepare appropriate data model and develop the information system using selected data base management system software. Also sort, edit and retrieve the data as asked by teacher. Teacher will also assign the data for this. Also attach the print of data base and outcome of sorting/retrieval. 	8
6	ALL	Mini project and presentation: a. A group of 5-6 students will visit one industry/organization (small scale/medium scale/shop based) and will study the system of handling the unit. Students will record following. i. How output planning is done? ii. How materials purchase quantities are decided? iii. What is the system of inventory control? iv. Whether computers are used in any way or not. If used, for what purpose, these are used. v. How they are optimizing utilization of resources? vi. How is the quality control system? vii. How rework and rejection records are kept? viii. What they do to reduce rejection and rework? ix. Do they keep record keeping systems for utilization of resources?(Human-man power, machines, equipment, devices, plants, etc.). If yes, how they	8

are maintaining? If no, suggest any computer based system with details.	
x. How supervisors are performing? Take interviews of supervisors and ask them important aspects to be followed for developing good qualities to become	
successful supervisors.	
xi. Any other point/s suggested by teacher.	
b. Prepare power point presentation and present the work including photographs and movies of actual project work.	
(This may be flexi –time based work. It may not be necessary to exactly follow the time table slots.)	-
Total Hours	28

Course Code: 3351907

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.PA component of practical marks is dependent on continuous and timely evaluation and submission of exercises.
- b. Term work report must not include any photocopy / ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Mini project and presentation topic/area has to be assigned to the students in the beginning of the term by batch teacher.
- d. For practical ESE part, students are to be assessed for competencies achieved. They should be given experience/part of experience to perform.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

The student activities are same as given in list of practical/exercises. Teacher may give more such activities to interested/bright students.

9. SPECIAL INSTRUCTIONAL STRATEGIES (IF Any)

During practical exercises teacher should not prescribe solutions to students and should motivate them to come out with different alternatives (even if they may not be feasible) and should allow them to try and learn on their own from their mistakes. Teacher should help students only when they are completely stuck.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Computer database organization.	Jame's Martin	PHI publication
2.	Production and operations management.	N.G.Nair	TMGH publication
3.	Production and operations management.	Chase/Aquiline, Irwinpublication	PHI publication

4.	Management information system.	S.Sadagopan	PHI publication
5.	Production and operations management.	S.N.Charry	TMGH publication
6.	Modern production & operations management.	Elwood S. Buffa and John willy & RakeshK. Sarin. publication	
7.	Introduction to Database Management	Madhulika Jain, Jain & Shashi Singh	BPB publication
8.	Quality planning and analysis.	J.M.Juran, Frank M.Gryna	TMGHpublication

Course Code: 3351907

B) List of Software/Learning Websites.

- i. http://www.ftpress.com/articles/article.aspx?p=2167438&seqNum=2 (OM)
- ii. http://en.wikipedia.org/wiki/Quality
- iii. http://www.businessdictionary.com/definition/quality.html
- iv. https://www.youtube.com/watch?v=ypZiSguq4jM
- v. https://www.youtube.com/watch?v=LdhC4ziAhgY
- vi. https://www.youtube.com/watch?v=jd8B0QK9_5g
- vii. https://www.youtube.com/watch?v=tjQFtSmVppY (market survey)
- viii. http://www.wikihow.com/Make-a-Market-Survey
- ix. https://www.youtube.com/watch?v=IO4zrY2tdCY (information system)
- x. https://www.youtube.com/watch?v=LiQMHqi3csI(information system)
- xi. https://www.youtube.com/watch?v=DTWnQDAhp9k (methods of production)
- xii. http://crl.du.ac.in/ical09/papers/index_files/ical-111_76_183_2_RV.pdf (quality circle)
- xiii. http://www.slideshare.net/monikatoshika/quality-circle-7881239(quality circle)

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics.

- Shri K.H.Patel, Head of Mechanical Engineering Department, Dr. S.S. & S. Gandhi College of Engineering and Technology, Surat.
- Shri A.M Talsaniya, Lecturer in Mechanical Engineering, Sir B.P.I., Bhavnagar.

Coordinator and Faculty Members from NITTTR Bhopal.

- **Prof. S.K.Pradhan,** Associate Professor, Mechanical Engg. NITTTR, Bhopal
- Dr. A.K.Sarathe, Associate Professor, Mechanical Engg. NITTTR, Bhopal