## **English for Research Paper Writing** SUBJECT CODE: 3700001 **SEMESTER: I/II**

#### Type of course: Audit course

#### Prerequisite: -

#### Rationale: -

#### **Teaching and Examination Scheme**:

| Teaching Scheme |   |   | Credits | Examination Marks |        |                 |        | Total |
|-----------------|---|---|---------|-------------------|--------|-----------------|--------|-------|
| L               | Т | Р | С       | Theory Marks      |        | Practical Marks |        | Marks |
| l               |   |   |         | ESE(E)            | PA (M) | PA (V)          | PA (I) |       |
| 2               | 0 | 0 | 0       | 50                | 0      | 0               | 0      | 50    |
| Content         |   |   |         |                   | 3      |                 |        |       |

#### Content

| Sl.<br>No. | Торіс                                                                                                                                                                                                          | Teaching<br>Hours | Module<br>Weightage<br>(%) |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|
| 1.         | Planning and Preparation, Word Order, Breaking up long<br>sentences, Structuring Paragraphs and Sentences, Being Concise<br>and Removing Redundancy, Avoiding Ambiguity and                                    | 4                 | 17                         |
| 2.         | Vagueness<br>Clarifying Who Did What, Highlighting Your Findings,<br>Hedging and Criticising, Paraphrasing and Plagiarism, Sections<br>of a Paper, Abstracts. Introduction                                     | 4                 | 17                         |
| 3.         | Review of the Literature, Methods, Results, Discussion,<br>Conclusions, The Final Check                                                                                                                        | 4                 | 17                         |
| 4.         | key skills are needed when writing a Title, key skills are needed<br>when writing an Abstract, key skills are needed when writing an<br>Introduction, skills needed when writing a Review of the<br>Literature | 4                 | 17                         |
| 5.         | skills are needed when writing the Methods, skills needed when<br>writing the Results, skills are needed when writing the<br>Discussion, skills are needed when writing the Conclusions                        | 4                 | 16                         |
| 6          | useful phrases, how to ensure paper is as good as it could<br>possibly be the first- time submission                                                                                                           | 4                 | 16                         |

#### **Reference Books:**

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook
- 4. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

#### **Course Outcome:**

At the end of the course, the student will be able to:

- 1. Understand that how to improve your writing skills and level of readability
- 2. Learn about what to write in each section
- 3. Understand the skills needed when writing a Title
- 4. Ensure the good quality of paper at very first-time submission

tion

## **Constitution of India** SUBJECT CODE: 3700005 **SEMESTER: I/II**

## Type of course: Audit course

## Prerequisite: -

## Rationale: -

## **Teaching and Examination Scheme**:

| Teaching Scheme Credits |   |   | Credits |              | Examination Marks |                 |        |       |
|-------------------------|---|---|---------|--------------|-------------------|-----------------|--------|-------|
| L                       | Т | Р | С       | Theory Marks |                   | Practical Marks |        | Marks |
|                         |   |   |         | ESE(E)       | PA (M)            | PA (V)          | PA (I) |       |
| 2                       | 0 | 0 | 0       | 50           | 0                 | 0               | 0      | 50    |

| Δ      | 0 0 0   |            | 30                         | 0                                  | 0          |   | 0      | 1        |          |
|--------|---------|------------|----------------------------|------------------------------------|------------|---|--------|----------|----------|
| Conten | t       |            |                            |                                    |            | 3 |        |          |          |
| SI.    | Торіс   |            |                            |                                    |            |   | aching | Module   | <u>,</u> |
| No.    |         |            |                            |                                    |            |   | ours   | Weightag | ge       |
|        |         |            |                            |                                    |            |   |        | (%)      | 5-       |
| 1.     | Histor  | y of Maki  | ng of the l                | Indian Constitutio                 | n          | 4 |        | 17       |          |
|        | History | 7          |                            |                                    |            |   |        |          |          |
|        | Draftin | g Commit   | tee, ( Com                 | position & Workin                  | g)         |   |        |          |          |
| 2.     | Philoso | ophy of th | e Indian (                 | Constitution:                      |            | 4 |        | 17       |          |
|        | Preamb  | ole        |                            |                                    |            |   |        |          |          |
|        | Salient | Features   |                            |                                    |            |   |        |          |          |
| 3.     |         | Contour    | s of Co <mark>ns</mark> t  | t <mark>itutiona</mark> l Rights & | Duties:    | 4 |        | 17       |          |
|        |         | Fundame    | ntal Right                 | S                                  |            |   |        |          |          |
|        |         | Right to l | Equality                   |                                    |            |   |        |          |          |
|        |         | Right to l | Freedom                    |                                    |            |   |        |          |          |
|        |         | Right aga  | a <mark>inst E</mark> xplo | oitation                           |            |   |        |          |          |
|        |         | Right to l | Freedom o                  | f Religion                         |            |   |        |          |          |
|        |         | Cultural a | and Educa                  | tional Rights                      |            |   |        |          |          |
|        |         | Right to   | Constitutio                | onal Remedies                      |            |   |        |          |          |
|        |         | Directive  | Principles                 | s of State Policy                  |            |   |        |          |          |
|        |         | Fundame    | ntal Dutie                 | s.                                 |            |   |        |          |          |
| 4.     |         | Organs of  | of Govern                  | ance:                              |            | 4 |        | 17       |          |
|        |         | Parliame   | nt                         |                                    |            |   |        |          |          |
| - ( A  |         | Composi    | tion                       |                                    |            |   |        |          |          |
|        |         | Qualifica  | tions and                  | Disqualifications                  |            |   |        |          |          |
|        |         | Powers a   | nd Functio                 | ons                                |            |   |        |          |          |
|        |         | Executive  | e                          |                                    |            |   |        |          |          |
|        |         | President  |                            |                                    |            |   |        |          |          |
|        |         | Governor   | •                          |                                    |            |   |        |          |          |
|        |         | Council of | of Minister                | rs                                 |            |   |        |          |          |
|        |         | Judiciary  | , Appointr                 | nent and Transfer of               | of Judges, |   |        |          |          |
|        |         | Qualifica  | tions                      |                                    | <b>C</b>   |   |        |          |          |
|        |         | Power      | s and Fund                 | ctions                             |            |   |        |          |          |

| 5. | Local Administration:                                     | 4  | 16 |
|----|-----------------------------------------------------------|----|----|
|    | District's Administration head: Role and Importance,      |    |    |
|    | Municipalities: Introduction, Mayor and role of Elected   |    |    |
|    | Representative,                                           |    |    |
|    | CEO of Municipal Corporation.                             |    |    |
|    | Pachayati raj: Introduction, PRI: ZilaPachayat.           |    |    |
|    | Elected officials and their roles, CEO ZilaPachayat:      |    |    |
|    | Position and role.                                        |    |    |
|    | Block level: Organizational Hierarchy (Different          |    |    |
|    | departments),                                             |    |    |
|    | □ Village level: Role of Elected and Appointed officials, |    |    |
|    | □ □ Importance of grass root democracy                    |    |    |
| 6  | Election Commission:                                      | 4  | 16 |
|    | Election Commission: Role and Functioning.                |    |    |
|    | Chief Election Commissioner and Election                  |    | •  |
|    | Commissioners.                                            |    |    |
|    | State Election Commission: Role and Functioning.          | C) |    |
|    | □ □ Institute and Bodies for the welfare of SC/ST/OBC     |    |    |
|    | and women.                                                |    |    |

## **Reference Books:**

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

#### **Course Outcome:**

At the end of the course, the student will be able to:

- 1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective
- 2. To address the growth of Indian opinion regarding modern Indian intellectuals constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism
- 3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.





#### GUJARAT TECHNOLOGICAL UNIVERSITY Master of Engineering Subject Code - 3720001 Semester II Subject Name: Mini Project with Seminar

## **Type of course: Core**

## **Teaching and Examination Scheme:**

| Tea | ching Sch | neme | Credits | Examination Marks |         |             |        | Total |
|-----|-----------|------|---------|-------------------|---------|-------------|--------|-------|
| L   | Т         | Р    | C       | Theor             | y Marks | Practical N | Marks  | Marks |
|     |           |      |         | ESE (E)           | PA (M)  | ESE (V)     | PA (I) |       |
| 0   | 0         | 4    | 2       | 0                 | 0       | 0           | 100    | 100   |

#### **Content:**

A mini project requires comparatively less time than major projects. They are comparatively simpler and have shorter duration. Mini Project helps students to explore and strengthen the understanding of fundamentals through practical application of theoretical concepts. Mini Project can help them to boost their skills and widen their horizon of thinking. It will act like a beginners guide to undertake the major project/dissertation during the final year and will ensure preparedness of students to undertake major projects/dissertation. Students will be required to select the topic relevant to their specialization and that has value addition. Students will get an opportunity to work in actual industrial environment if they opt for internship. Based on the selected topic student will also prepare seminar report based on the literature survey

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available. End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution. Continuous assessment of Mini Project at Mid Sem and End Sem will be monitored by the departmental committee.

**Course Outcomes**: At the end of the course, the student will be able to:

- 1. Identify engineering problems reviewing available literature.
- 2. Study different techniques used to analyze complex systems.
- 3. Solve a live problem using software/analytical/computational tools and present solution by using his/her technique applying engineering principles.
- 4. Learn to write technical reports and develop skills to present and defend their work in front of technically qualified audience.





## Master of Engineering Subject Code: 3720216 Semester – II **Subject Name: Advance Algorithms**

### **Type of course: Regular**

## Prerequisite: UG level course in Algorithm Design and Analysis

Rationale: This course will cover fundamental algorithms that operate on common data structures, for instance sorting and searching; advanced design and analysis techniques; advanced graph matching algorithms including minimum spanning trees and shortest paths; flow networks; and linear programming. In summary, this course will provide exposure to recent trends in problem solving paradigms.

### **Teaching and Examination Scheme:**

| Teaching Scheme Credits |   |   |   |         | Examination Marks |             |        |       |
|-------------------------|---|---|---|---------|-------------------|-------------|--------|-------|
| L                       | Т | Р | C | Theor   | y Marks           | Practical N | Marks  | Marks |
|                         |   |   |   | ESE (E) | PA (M)            | ESE (V)     | PA (I) |       |
| 3                       | 0 | 2 | 4 | 70      | 30                | 30          | 20     | 150   |

#### **Content:**

| Content: |                                                                                           |     |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------|-----|--|--|--|--|
| Sr. No.  | Content                                                                                   |     |  |  |  |  |
|          |                                                                                           | Hrs |  |  |  |  |
| 1        |                                                                                           | (   |  |  |  |  |
| I        | Sorting: Review of various sorting algorithms, topological sorting Graph: Definitions and | 6   |  |  |  |  |
|          | Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case          |     |  |  |  |  |
|          | (Dijkasra's), depin-first search and computation of strongly connected components,        |     |  |  |  |  |
|          | emphasis on correctness proof of the argorithm and time/space analysis, example of        |     |  |  |  |  |
| •        | amortized analysis.                                                                       | 0   |  |  |  |  |
| 2        | matroids: introduction to greedy paradigm, algorithm to compute a maximum weight          | ð   |  |  |  |  |
|          | Creph Matching: Algorithm to compute maximum matching. Characterization of                |     |  |  |  |  |
|          | maximum matching by sugmenting noths. Edmond's Blossom algorithm to compute               |     |  |  |  |  |
|          | augmenting nath                                                                           |     |  |  |  |  |
| 3        | Flow Networks: Mayflow mineut theorem Ford Fulkerson Method to compute                    | 0   |  |  |  |  |
| 5        | maximum flow Edmond-Karn maximum-flow algorithm                                           | ,   |  |  |  |  |
|          | Matrix Computations: Strassen's algorithm and introduction to divide and conquer          |     |  |  |  |  |
|          | paradigm inverse of a triangular matrix relation between the time complexities of basic   |     |  |  |  |  |
|          | matrix operations LUP-decomposition                                                       |     |  |  |  |  |
| 4        | <b>Shortest Path in Graphs:</b> Floyd-Warshall algorithm and introduction to dynamic      | 10  |  |  |  |  |
| •        | programming paradigm. More examples of dynamic programming.                               | 10  |  |  |  |  |
|          | Modulo Representation of integers/polynomials: Chinese Remainder Theorem.                 |     |  |  |  |  |
|          | Conversion between base-representation and modulo-representation. Extension to            |     |  |  |  |  |
|          | polynomials. Application: Interpolation problem.                                          |     |  |  |  |  |
|          |                                                                                           |     |  |  |  |  |

Page 1 of 2



## Master of Engineering Subject Code: 3720216

|   | Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier     |    |
|---|------------------------------------------------------------------------------------------|----|
|   | Transform algorithm. Schonhage-Strassen Integer Multiplication algorithm                 |    |
| 5 | Linear Programming: Geometry of the feasibility region and Simplex Algorithm             | 10 |
|   | NP-completeness: Examples, proof of NP-hardness and NP-completeness.                     |    |
|   | One or more of the following topics based on time and interest Approximation             |    |
|   | algorithms, Randomized Algorithms, Interior Point Method, Advanced Number Theoretic      |    |
|   | Algorithm                                                                                |    |
| 6 | Recent Trends in problem solving paradigms using recent searching and sorting techniques | 5  |
|   | by applying recently proposed data structures.                                           |    |

## **Reference Books:**

- 1. "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos
- 4. "Fundamentals of Algorithmics" by Gilles Brassard and Paul Bratley.

## **Course Outcomes:**

| Sr. No. | CO statement                                                                        | Marks %<br>weightage |
|---------|-------------------------------------------------------------------------------------|----------------------|
| CO-1    | Analyze the time complexity/performance of different algorithms.                    | 20%                  |
| CO-2    | Determining the appropriate data structure for solving a particular set of problem. | 20%                  |
| CO-3    | Categorize the different problems in various classes according to their complexity. | 30%                  |
| CO-4    | Insight of recent activities in the field of the advanced data structure.           | 30%                  |

## List of Experiments:

- Minimum 10 experiments based on the above contents.
- Mini Project in a group of max. 3 students
- Writing a research paper on selected topic from content with latest research issues in that topic

## **Major Equipments:**

- Latest PCs with related software

## List of Open Source Software/learning website:

- https://www.coursera.org/specializations/algorithms
- https://visualgo.net/bn
- https://online.stanford.edu/courses/cs161-design-and-analysis-algorithms



## **GUJARAT TECHNOLOGICAL UNIVERSITY Master of Engineering** Subject Code: 3720217 Semester – II Subject Name: Soft Computing

### Type of course: Core Course

### Prerequisite: Basic Knowledge of Mathematics

**Rationale:** To introduce the soft computing concepts and techniques and to foster their abilities in designing appropriate technique for a given scenario. To implement soft computing based solutions for real world problems. T give students knowledge about non-traditional techniques and fundamentals of artificial neural networks, fuzzy logic and genetic algorithms. To provide students hands-on experience on MATLAB to implement various strategies.

#### **Teaching and Examination Scheme:**

| Tea | aching Scl | neme | Credits |         | Examination Marks |             |        |       |
|-----|------------|------|---------|---------|-------------------|-------------|--------|-------|
| L   | Т          | Р    | С       | Theor   | y Marks 👘 👘       | Practical N | Marks  | Marks |
|     |            |      |         | ESE (E) | PA (M)            | ESE (V)     | PA (I) |       |
| 3   | 0          | 2    | 4       | 70      | 30                | 30          | 20     | 150   |

| Conten | ıt:                                                                         |       |             |
|--------|-----------------------------------------------------------------------------|-------|-------------|
| Sr.    | Content                                                                     | Total | % Weightage |
| No.    |                                                                             | Hrs   |             |
| 1      | Unit 1 : INTRODUCTION TO SOFT COMPUTING AND NEURAL                          | 7     | 14          |
|        | <b>NETWORKS:</b> Evolution of Computing: Soft Computing Constituents,       |       |             |
|        | From Conventional AI to Computational Intelligence: Machine Learning        |       |             |
|        | Basics                                                                      |       |             |
| 2      | Unit 2: FUZZY LOGIC: Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy            | 9     | 20          |
|        | Relations, Membership Functions: Fuzzy Rules and Fuzzy Reasoning, Fuzzy     |       |             |
|        | Inference Systems, Fuzzy Expert Systems, Fuzzy Decision Making.             |       |             |
| 3      | Unit 3: NEURAL NETWORKS: Machine Learning Using Neural                      | 10    | 20          |
|        | Network, Adaptive Networks, Feed forward Networks, Supervised Learning      |       |             |
|        | Neural Networks, Radial Basis Function Networks : Reinforcement             |       |             |
|        | Learning, Unsupervised Learning Neural Networks, Adaptive Resonance         |       |             |
|        | architectures, Advances in Neural networks                                  |       |             |
| 4      | Unit 4: GENETIC ALGORITHMS: Goals of optimization, comparison               | 9     | 20          |
|        | with traditional methods, schemata, Terminology in GA – strings, structure, |       |             |
|        | parameter string, data structures, operators, coding fitness function,      |       |             |
|        | algorithm, applications of GA in Machine Learning : Machine Learning        |       |             |
| _      | Approach to Knowledge Acquisition.                                          | 10    | 20          |
| 5      | Unit 5: Matiab/Python Lib: Introduction to Matiab/Python, Arrays and        | 10    | 20          |
|        | furzy logic toolbox. Simple implementation of Artificial Neural Network     |       |             |
|        | and Euzzy Logic                                                             |       |             |
| 6      | Unit 6 · Decent Trands in various classifiers, neural networks and constin  | 3     | 06          |
| 0      | algorithm                                                                   | 5     | VU          |
|        |                                                                             |       |             |



Master of Engineering

Subject Code: 3720217

#### **Reference Books:**

- 1. Jyh Shing Roger Jang, Chuen Tsai Sun, Eiji Mizutani, Neuro-Fuzzy and Soft Computing, Prentice Hall of India, 2003.
- 2. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, 1995.
- 3. MATLAB Toolkit Manual
- 4. Timothy J.Ross, Fuzzy Logic with Engineering Applications, McGraw-Hill
- 5. Goldberg, D. E, Genetic algorithm in search, optimization and machine learning, Addison-Wesley, Reading Mass
- 6. S.N.Sivanandam, S.N.Deepa, Principles of Soft Computing, 2e, Wiley India Pvt. Ltd.
- 7. S. RAJASEKARAN, G. A. VIJAYALAKSHMI PAI, NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM: SYNTHESIS AND APPLICATIONS, PHI Learning Pvt. Ltd

## **Course Outcome:**

| Sr. No. | CO statement                                                                                      | Marks %<br>weightage |
|---------|---------------------------------------------------------------------------------------------------|----------------------|
| CO-1    | Identify and describe soft computing techniques and their roles in building intelligent machines. | 20                   |
| CO-2    | Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering problems.     | 20                   |
| CO-3    | Apply genetic algorithms to combinatorial optimization problems.                                  | 20                   |
| CO-4    | Evaluate and compare solutions by various soft computing approaches for a given problem.          | 20                   |
| CO-4    | Use various tools to solve soft computing problems.                                               | 20                   |

**Suggested List of Experiments:** If MATLAB is not available, the practical may be carried out in SCILAB or C/C++/Java

- 1. Introduction to MATLAB & its environment.
- 2. Introduction to MATLAB: Fuzzy Logic Toolbox, Fuzzy Logic Simulink Demos
- 3. Introduction to MATLAB: Neural Network (NN) Toolbox, NN Simulink Demos
- 4. MATLAB simulation: Artificial Neural Network (ANN) implementation
- 5. MATLAB simulation: NN Tool Artificial Neural Network (ANN) implementation
- 6. MATLAB simulation: Various structure of NN algorithms implementation
- 7. MATLAB simulation: Training Algorithms of ANN.
- 8. MATLAB simulation: Coding and minimizing a fitness function using GA.

## List of Open Source Software/learning website:

- 1. <u>http://www.iitk.ac.in/kangal/codes.shtml</u>
- 2. http://lancet.mit.edu/ga/dist/galibdoc.pdf
- 3. https://books.google.co.in/books?hl=en&lr=&id=W5SAhUqBVYoC&oi=fnd&pg=PR11& dq=SOft+computing+course+&ots=et\_2Nvjy\_4&sig=jDXLrGIeD3zc4QUxvcEvC5FrFY#v=onepa ge&q=SOft%20computing%20course&f=false



Master of Engineering Subject Code: 3720217

#### **Major Equipments / Software:**

Students may implement open ended problems on some Microprocessors / DSP boards. Computers with MATLAB / Scilab/ C/C++/Java software may serve the purpose.

Houeston Papers.con



#### Master of Engineering Subject Code: 3720218 SUBJECT NAME: Secure Software Design and Enterprise Computing

Semester II

## **Type of course: Elective**

## Prerequisite: Computer Programming and Software Engineering

Rationale: Students should be made aware with secure software design issues and understand how to fix software flaws and bugs in various software. Students will come to understand various issues like weak random number generation, information leakage, poor usability, and weak or no encryption on data traffic. They will be able to learn and apply techniques for successfully implementing and supporting network services on an Enterprise scale and heterogeneous systems environment. Study of methodologies and tools to design and develop secure software containing minimum vulnerabilities and flaws.

#### **Teaching and Examination Scheme:**

| Tea | aching Scl | heme | Credits | Examination Marks |        |          | Total    |       |
|-----|------------|------|---------|-------------------|--------|----------|----------|-------|
| L   | Т          | Р    | C       | Theory Mar        | rks    | Practica | al Marks | Marks |
|     |            |      |         | ESE(E)            | PA (M) | PA (V)   | PA (I)   |       |
| 3   | 0          | 2    | 4       | 70                | 30     | 30       | 20       | 150   |

| Conten | ıt:                                                                          |       |             |
|--------|------------------------------------------------------------------------------|-------|-------------|
| Sr.    | Content                                                                      | Total | % Weightage |
| No.    |                                                                              | Hrs   |             |
|        |                                                                              |       |             |
| 1      | Unit 1:                                                                      | 9     | 20          |
|        | Secure Software Design                                                       |       |             |
|        | Identify software vulnerabilities and perform software security analysis,    |       |             |
|        | Master security programming practices, Master fundamental software           |       |             |
|        | security design concepts, Perform security testing and quality assurance.    |       |             |
| 2      | Unit 2:                                                                      | 12    | 25          |
|        | Enterprise Application Development                                           |       |             |
|        | Describe the nature and scope of enterprise software applications, Design    |       |             |
|        | distributed N-tier software application, Research technologies available for |       |             |
|        | the presentation, business and data tiers of an enterprise software          |       |             |
|        | application, Design and build a database using an enterprise database        |       |             |
|        | system, Develop components at the different tiers in an enterprise system,   |       |             |
|        | Design and develop a multi-tier solution to a problem using technologies     |       |             |
|        | used in enterprise system, Present software solution.                        |       |             |
| 3      | Unit 3: Enterprise Systems Administration                                    | 10    | 20          |
|        | Design, implement and maintain a directory-based server infrastructure in a  |       |             |
|        | heterogeneous systems environment, Monitor server resource utilization for   |       |             |
|        | system reliability and availability, Install and administer network services |       |             |
|        | (DNS/DHCP/Terminal Services/Clustering/Web/Email).                           |       |             |
| 4      | Unit 4: Enterprise Network                                                   | 10    | 20          |
|        | Obtain the ability to manage and troubleshoot a network running multiple     |       |             |
|        | services, Understand the requirements of an enterprise network and how to    |       |             |



## Master of Engineering

| go about managing mem.                                                                                                                                             |   |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| 5 Unit 5: Defending Applications                                                                                                                                   | 7 | 15 |
| Handle insecure exceptions and command/SQL injection, Defend web and mobile applications against attackers, software containing minimum vulnerabilities and flaws. |   |    |

## **Reference Books:**

1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett

2. Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise Software Security, Addison Wesley.

#### **Course Outcome:**

#### **Course Outcomes:**

| Sr. No. | CO statement                                                        | Marks %<br>weightage |
|---------|---------------------------------------------------------------------|----------------------|
| CO-1    | Understand Software process vulnerabilities for an organization and | 45                   |
|         | design and develop multi-tier solution of a problem.                |                      |
| CO-2    | Able to administer Enterprise System.                               | 20                   |
| CO-3    | Troubleshoot Enterprise Network.                                    | 20                   |
| CO-4    | Develop secure software which can defend against attackers          | 15                   |

#### Practicals & Assignments :

- 1. Study of various open source security tools for Application testing, Code Review, Penetration Testing, Vulnerability Assessment, Vulnerability Scanner etc.
- 2. Design and develop multi tier application for an enterprise.
- 3. Installation of Directory based Server and monitoring resource utilization.
- 4. Practicals based on network services such as DNS/DHCP/Terminal Services/Clustering/Web/Email
- 5. Study of SQL Injection Problem.
- 6. Developing application that can defend SQL injection problem.





## Master of Engineering Subject Code: 3720219 Semester – II Subject Name: Computer Vision

## **Type of course: Elective**

**Prerequisite:** Linear Algebra, Vector Calculus, Data Structures and Programming.

## **Rationale:**

- Be familiar with both the theoretical and practical aspects of computing with images. •
- Have described the foundation of image formation, measurement, and analysis. •
- Understand the geometric relationships between 2D images and the 3D world.
- Grasp the principles of state-of-the-art deep neural networks. •

## **Teaching and Examination Scheme:**

| Tea | aching Sch | neme | Credits | Examination Marks |         |             |        | Total |
|-----|------------|------|---------|-------------------|---------|-------------|--------|-------|
| L   | Т          | Р    | С       | Theor             | y Marks | Practical N | Marks  | Marks |
|     |            |      |         | ESE (E)           | PA (M)  | ESE (V)     | PA (I) |       |
| 3   | 0          | 2    | 4       | 70                | 30      | 30          | 20     | 150   |

|     | Content:                                                                                                                                                                                                                                                                       |       |           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| Sr. | Content                                                                                                                                                                                                                                                                        | Total | %         |
| No. |                                                                                                                                                                                                                                                                                | Hrs   | Weightage |
| 1   | Overview, computer imaging systems, lenses, Image formation and sensing,<br>Image analysis, pre-processing and Binary image analysis.                                                                                                                                          | 8     | 16%       |
| 2   | Edge detection, Edge detection performance, Hough transform, corner detection                                                                                                                                                                                                  | 9     | 19%       |
| 3   | Segmentation, Morphological filtering, Fourier transform                                                                                                                                                                                                                       | 9     | 19%       |
| 4   | Feature extraction, shape, histogram, color, spectral, texture, using CV IP tools,<br>Feature analysis, feature vectors, distance /similarity measures, data preprocessing                                                                                                     | 9     | 19%       |
| 5   | Pattern Analysis:<br>Clustering: K-Means, K-Medoids, Mixture of Gaussians<br>Classification: Discriminant Function, Supervised, Un-supervised, Semi-supervised<br>Classifiers: Bayes, KNN, ANN models; Dimensionality Reduction: PCA, LDA,<br>ICA, and Non-parametric methods. | 9     | 19%       |
| 6   | Recent trends in Activity Recognition, computational photography, Biometrics.                                                                                                                                                                                                  | 4     | 8%        |
|     | Total                                                                                                                                                                                                                                                                          | 48    | 100%      |



## Master of Engineering Subject Code: 3720219

## **Reference Books:**

- 1. Computer Vision: Algorithms and Applications by Richard Szeliski.
- Computer Vision A modern approach, by D.Forsyth and J.Ponce, Prentice Hall Robot Vision, by B. K. P. Horn, McGraw-Hill.
- 3. Deep Learning, by Goodfellow, Bengio, and Courville.
- 4. Dictionary of Computer Vision and Image Processing, by Fisher et al.
- 5. Three-Dimensional Computer Vision, by Olivier Faugeras, The MIT Press.

## **Course Outcomes:**

At the end of the module the student will be able to:

| Sr.<br>No. | CO statement                                                                                                                                                                    | Marks %<br>weightage |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| CO-1       | Identify basic concepts, terminology, theories, models and methods in<br>the field of computer vision.                                                                          | 20%                  |
| CO-2       | Describe basic methods of computer vision related to multi-scale<br>representation, edge detection and detection of other primitives, stereo,<br>motion and object recognition. | 35%                  |
| CO-3       | Developed the practical skills necessary to build computer vision applications.                                                                                                 | 30%                  |
| CO-4       | To have gained exposure to object and scene recognition and categorization from images.                                                                                         | 15%                  |

## List of Experiments:

- 1. To perform variants of linear filter on an image.
- 2. To perform median filter on an image.
- 3. To perform all morphological filter operations on the image.
- 4. To perform edge detection on an image using Sobel, Prewitt, Roberts and Canny Method.
- 5. To perform Hough transform on an image.
- 6. Generate histogram and perform histogram equalization of an image.
- 7. To perform clustering using any technique on the image.
- 8. To perform various pattern classification and analysis techniques on images.
- 9. To perform various pattern clustering and analysis techniques on images.

List of Open Source Software/learning website: Open CV, Python



### **Master of Engineering** Subject Code: 3720220 Semester – II Subject Name: HPC Architecture and ECO system

## **Type of course: Elective**

Prerequisite: Computer Architecture and Organization, Data Structure

Rationale: Algorithmic processing performed in High Performance Computing environments impacts the lives of billions of people, and planning for exascale computing presents significant power challenges to the industry. The objective of the course is to impart in depth knowledge of parallel architectures and different shared/distributed memory architectures in support to exascale computing. MPI and OpenMP are discussed along with their applications.

## **Teaching and Examination Scheme:**

| Tea      | aching Sch | neme | Credits | Examination Marks |        |             | Total  |       |
|----------|------------|------|---------|-------------------|--------|-------------|--------|-------|
| L        | Т          | Р    | С       | Theory Marks      |        | Practical I | Marks  | Marks |
|          |            |      |         | ESE (E)           | PA (M) | ESE (V)     | PA (I) |       |
| 3        | 0          | 2    | 4       | 70                | 30     | 30          | 20     | 150   |
| Content: |            |      |         |                   |        |             |        |       |

#### **Content:**

| Sr. No. | Content                                                                                                                                              | Total |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|         |                                                                                                                                                      | Hrs   |
| 1       | Overview of parallel system organization                                                                                                             | 4     |
| 2       | Examples of Scientific Computing; Parallel Languages, Embarrassingly parallel problems; problem decomposition, graph partitioning and load balancing | 12    |
| 3       | Introduction to message passing and MPI programming                                                                                                  | 7     |
| 4       | Introduction to shared memory and OpenMP programming                                                                                                 | 7     |
| 5       | Recent trends in OpenMP and MPI programming, application areas of scientific computing.                                                              | 9     |
| 6       | Performance analysis tools; HPCToolkit, OpenSpeedShop,<br>Debugging and Profiling tools; GDB, PAPI, mpiP, ompP, Valgrind, MPI Program Profiler       | 9     |
|         | Total                                                                                                                                                | 48    |

## **Reference Books:**

- 1. 1. Parallel Programming for Multicore and Cluster Systems by Thomas Rauber and Gudula Runger.
- 2. Scientific Parallel Computing by Scott, Clark, and Bagheri.

Page 1 of 3



#### Master of Engineering Subject Code: 3720220

3. Using OpenMP: Portable Shared Memory Parallel Programming by Chapman, Jost, and van der Pas.

## **Course Outcomes:**

| Sr. No. | CO statement                                                           | Marks % weightage |
|---------|------------------------------------------------------------------------|-------------------|
|         |                                                                        |                   |
| CO-1    | Develop parallel algorithms for high performance systems.              | 25%               |
| CO-2    | Perform problem decomposition and load balancing using MPI and OpenMP. | 25%               |
| CO-3    | Identify hot spots in the codes using performance analysis tools.      | 25%               |
| CO-4    | Evaluate the performance of the code using the tools                   | 25%               |

Distribution of marks weightage for cognitive level

| Bloom's Taxonomy for Cognitive Domain | Marks<br>% weightage |
|---------------------------------------|----------------------|
| Recall                                | 5                    |
| Comprehension                         | 5                    |
| Application                           | 20                   |
| Analysis                              | 25                   |
| Evaluate                              | 25                   |
| Create                                | 20                   |

## **Practical List:**

3)

Use Valgrind, Vtune Amplifier, Nvidia Visual Profiler and Nvidia Nsight to identify hotspots and other parameters for detailed analysis of following the practicals.

- 1) Calculate standard deviation using Pthread, OpenMP and MPI.
- 2) Write parallel code for Matrix Multiplication using MPI cluster of 4 nodes, OpenMP, PVM cluster of 4 nodes, OpenACC and CUDA and compare and plot the performance in terms of execution time for Matrix size of 1000 x 1000, 5000 x 5000, 10,000 x 10,000, 20,000 x 20,000.
  - Write the programs in MPD or in C with the Pthreads library for the following:
    - a) Sequential Jacobi iteration program
    - b) Parallel Jacobi iteration program
    - c) Sequential multigrid program
    - d) Parallel multigrid program
- 4) Perform Monte Carlo simulation using NVIDIA's CURAND library for random number generation.

Write your own small program to compute the average value of

 $az^2+bz+c\\$ 

Page 2 of 3



## **Master of Engineering** Subject Code: 3720220

where z is a standard Normal random variable (i.e. zero mean and unit variance, which is what the random number generator produces) and a, b, c are constants which you should store in constant memory. It is suggested to use each thread to average over 100 values, and then write this to a .tc device array which gets copied back to the host for the averaging over the contributions from each of the threads.

5)

Page 3 of 3



## Master of Engineering Subject Code: 3720221 Semester – II Subject Name: GPU Computing

## Type of course: Elective

## **Prerequisite:**

Rationale: Almost, all modern processors are multi-core, and in order to make effective use of them, you need to run multiple threads. When accelerators, such as GPUs, are available, then the number of threads needs to be even larger. This course teaches you how to organize the computations of the threads so that they work together and performs the required computations efficiently, making good use of the available hardware resources. We will focus on using GPUs for general purpose computing, rather than for graphics.

## **Teaching and Examination Scheme:**

| Tea | aching Scl | neme | Credits |         | Total       |             |        |       |
|-----|------------|------|---------|---------|-------------|-------------|--------|-------|
| L   | Т          | Р    | C       | Theor   | y Marks 🛛 🦰 | Practical N | Marks  | Marks |
|     |            |      |         | ESE (E) | PA (M)      | ESE (V)     | PA (I) |       |
| 3   | 0          | 2    | 4       | 70      | 30          | 30          | 20     | 150   |

| Conte |                                                                                         |       | 1         |
|-------|-----------------------------------------------------------------------------------------|-------|-----------|
| Sr.   | Content                                                                                 | Total | %         |
| No.   |                                                                                         | Hrs   | Weightage |
| 1     | Introduction: History, GPU Architecture, Clock speeds, CPU / GPU                        | 13    | 27        |
|       | comparisons, Heterogeneity, Accelerators, Parallel Programming, CUDA                    |       |           |
|       | OpenCL / OpenACC, Kernels Launch parameters, Thread hierarchy,                          |       |           |
|       | Warps/Wavefronts, Threadblocks/Workgroups, Streaming multiprocessors,                   |       |           |
|       | 1D/2D/3D thread mapping, Device properties, Simple Programs                             |       |           |
| 2     | Memory: Memory hierarchy, DRAM / global, local / shared, private / local,               | 7     | 15        |
|       | textures, Constant Memory, Pointers, Parameter Passing, Arrays and dynamic              |       |           |
|       | Memory, Multi-dimensional Arrays, Memory Allocation, Memory copying                     |       |           |
|       | across devices, Programs with matrices, Performance evaluation with different           |       |           |
|       | memories                                                                                |       |           |
| 3     | Synchronization: Memory Consistency, Barriers (local versus global),                    | 10    | 21        |
|       | Atomics, Memory fence. Prefix sum, Reduction. Programs for concurrent Data              |       |           |
|       | Structures such as Worklists, Linked-lists. Synchronization across CPU and              |       |           |
|       | GPU                                                                                     |       |           |
|       | <b>Functions</b> : Device functions, Host functions, Kernels functions, Using libraries |       |           |
|       | (such as Thrust), and developing libraries.                                             |       |           |
| 4     | Support: Debugging GPU Programs. Profiling, Profile tools, Performance                  | 8     | 17        |
|       | aspects                                                                                 |       |           |
|       | Streams: Asynchronous processing, tasks, Task-dependence, Overlapped data               |       |           |
|       | transfers, Default Stream, Synchronization with streams. Events, Event-based-           |       |           |
|       | Synchronization - Overlapping data transfer and kernel execution, pitfalls.             |       |           |



#### Master of Engineering Subject Code: 3720221

| 5 | Case Studies: Image Processing, Graph algorithms, Simulations, Deep     | 5  | 10   |
|---|-------------------------------------------------------------------------|----|------|
|   | Learning                                                                |    |      |
| 6 | Advanced topics: Dynamic parallelism, Unified Virtual Memory, Multi-GPU | 5  | 10   |
|   | processing, Peer access, Heterogeneous processing                       |    |      |
|   | Total                                                                   | 48 | 100% |

### **Reference Books:**

- 1. David Kirk and Wen-mei Hwu, Programming Massively Parallel Processors: A Hands-On Approach, 2nd Edition, Publisher: Morgan Kaufman, 2012, ISBN: 9780124159921.
- 2. Shane Cook, CUDA Programming: A Developer's Guide to Parallel Computing with GPUs, Morgan Kaufman; 2012 (ISBN: 978-0124159334)

5.0

#### **Course Outcomes:**

After learning the course the students should be able to:

| Sr.  | CO statement                                                                | Marks<br>% weightage |
|------|-----------------------------------------------------------------------------|----------------------|
| 110. |                                                                             | 70 weightage         |
| CO-1 | Define terminology commonly used in parallel computing, such as             | 10%                  |
|      | efficiency and speedup.                                                     |                      |
| CO-2 | Describe common GPU architectures and programming models.                   | 20%                  |
| CO-3 | Implement efficient algorithms for common application kernels, such as      | 20%                  |
|      | matrix multiplication.                                                      |                      |
| CO-4 | Given a problem, develop an efficient parallel algorithm to solve it.       | 25%                  |
| CO-5 | Given a problem, implement an efficient and correct code to solve it,       | 25%                  |
|      | analyze its performance, and give convincing written and oral presentations |                      |
|      | explaining the achievements.                                                |                      |

## Distribution of marks weightage for cognitive level

| Bloom's Taxonomy for Cognitive Domain | Marks       |
|---------------------------------------|-------------|
|                                       | % weightage |
| Recall                                | 5           |
| Comprehension                         | 10          |
| Application                           | 20          |
| Analysis                              | 25          |
| Evaluate                              | 25          |
| Create                                | 15          |

## **Practical List:**

- 1. Write CUDA code to compute the squares of the first N integers.
- 2. Write CUDA code to determine the following:
  - i. data transfer bandwidth from host to device



## Master of Engineering Subject Code: 3720221

- ii. data transfer bandwidth from device to host
- iii. data transfer bandwidth from host to device using pinned memory
- iv. data transfer bandwidth from device to host using pinned memory
- v. kernel creation overhead
- 3. Implement matrix multiplication on the CPU and GPU(without using shared memory), and compare their relative performances in terms of GFlop/s and report your performance results.
- 4. Write code for matrix multiplication using shared memory and compare its performance with CPU code. Determine the best tile-size for matrix multiplication using shared memory for your GPU machine.
- 5. Implement the 1-D convolution kernel and compare the performance with and without shared memory.
- 6. Perform 2-D convolution on an n x n matrix with an m x m mask and determine the number of halo cells required for it.
- 7. Implement 2-D convolution with data in shared memory. Also, analyze the reduction in bandwidth from use of shared memory in 2-D convolution.
- 8. Write code for histogramming without atomic operations and experiment with it to find out the fraction of times that it gives incorrect results and report it.
- 9. Rewrite program 8 so that it uses atomic operations, and compare its performance with it and report it.
- 10. Write code to perform reduction using atomic operations on global memory. (ii) Rewrite this code to use shared memory in order to reduce the overhead of atomic operations. (iii) Compare the performances of the above two with the reduction algorithm we had discussed earlier.
- 11. Write code with different threads performing atomic operations on different, but adjacent, locations in memory. Compare the performance with different data sizes.



## Master of Engineering Subject Code: 3720222 Semester – II Subject Name: Parallel Algorithms

## **Type of course: Elective**

Prerequisite: Data Structures, Design and Analysis of Algorithms

**Rationale:** Parallel computing has become mainstream and very affordable today. This is mainly because hardware costs have come down rapidly. Processing voluminous datasets is highly computation intensive. Parallel computing has been fruitfully employed in numerous application domains to process large datasets and handle other time-consuming operations of interest. As a result, unprecedented advances have been made in such areas as biology, scientific computing, modeling and simulations, and so forth. Hence the objective of this course is to introduce parallel algorithms and compare it with its sequential equivalent.

## **Teaching and Examination Scheme:**

| Tea | ching Sch | neme | Credits |         | Total   |             |        |       |
|-----|-----------|------|---------|---------|---------|-------------|--------|-------|
| L   | Т         | Р    | С       | Theor   | y Marks | Practical N | Marks  | Marks |
|     |           |      |         | ESE (E) | PA (M)  | ESE (V)     | PA (I) |       |
| 3   | 0         | 2    | 4       | 70      | 30      | 30          | 20     | 150   |

| Sr. | Content                                                                          | Total | %         |
|-----|----------------------------------------------------------------------------------|-------|-----------|
| No. |                                                                                  | Hrs   | Weightage |
| 1   | Computers Models of computation, Need for parallelism, Complexity measure        | 5     | 10        |
|     | for parallel algorithms, parallel computational models such as PRAM, LMCC,       |       |           |
|     | Hypercube, Cube Connected Cycle, Butterfly, Perfect Shuffle                      |       |           |
|     | Computers, Tree model, Pyramid model, Fully Connected model, PRAM,               |       |           |
|     | CREW, EREW models, simulation of one model from another one, Expressing          |       |           |
|     | parallel algorithms                                                              |       |           |
| 2   | Parallel combinatorial algorithms: permutations with and without repetitions     | 4     | 8         |
|     | combinations, derangements                                                       |       |           |
| 3   | Maximum/Minimum, Median, Kth Largest/Smallest element, Matrix Vector             | 6     | 13        |
|     | Multiplication, Matrix-Matrix Multiplication, Parallel discrete event simulation |       |           |
|     | Image dithering, Dense LU factorization                                          |       |           |
| 4   | Parallel sorting algorithms: Hyper quick sort, Merge sort, Bitonic merge         | 11    | 23        |
|     | Sort, odd even transposition, Enumeration sort (sorting on the CRCW model,       |       |           |
|     | CREW model and EREW model)                                                       |       |           |
| 5   | Parallel searching algorithms: Searching on a sorted sequence                    | 11    | 23        |
|     | (EREW, CREW, CRCW), Searching on a random sequence (EREW, CREW,                  |       |           |
|     | CRCW, Tree and Mesh) Sequential selection algorithm, Parallel selection          |       |           |
|     | algorithm (EREW parallel solution)                                               |       |           |



## Master of Engineering Subject Code: 3720222

| 4 | Parallel graph algorithms: parallel graph search &, tree traversal algorithms, | 11 | 23   |
|---|--------------------------------------------------------------------------------|----|------|
|   | Graph coloring, Minimal spanning tree, Shortest path algorithm                 |    |      |
|   | Total                                                                          | 48 | 100% |

## **Reference Books:**

- 1. Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, Introductionto Parallel Computing, Second Edition, Addison Wesley, 2003. ISBN: 0-201-64865.
- 2. S. Akl. Design and Analysis of Parallel Algorithms, Prentice Hall Inc, 1992.
- 3. Michael Quinn, Parallel Computing Theory and Practice, McGraw Hill, Second Edition, 1994.
- 4. F.T.Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, MK Publishers, San Mateo California, 1992..
- 5. Wilkinson, M.Allen, Parallel Programming Techniques and Applications using networked workstations and parallel computers, Prentice Hall, 1999
- 6. Joseph Jaja. An Introduction to Parallel Algorithms, Addison Wesley, 1992.
- 7. H. Sparkias and A. Gibbon. Lecture notes on Parallel Computation, Cambridge University Press, 1993.
- 8. K. Hwang and F. A. Briggs.Computer Architecture and Parallel Processing, McGraw Hill Inc., 1985.

## **Course Outcomes:**

After learning the course the students should be able to:

| Sr.  | CO statement                                                            | Marks       |
|------|-------------------------------------------------------------------------|-------------|
| No.  |                                                                         | % weightage |
| CO-1 | Gain basic understanding of fundamental concepts in parallel computing. | 10%         |
| CO-2 | Be able to identify and leverage common parallel computing patterns.    | 20%         |
| CO-3 | know about parallel computing model like PRAM, LMCC etc.                | 20%         |
| CO-4 | analyze the computational complexity of parallel algorithms             | 20%         |
| CO-5 | Be able to properly assess efficiency and scalability of a parallel     | 30%         |
|      | algorithm/application.                                                  |             |

Distribution of marks weightage for cognitive level

| Bloom's Taxonomy for Cognitive Domain | Marks<br>% weightage |
|---------------------------------------|----------------------|
| Recall                                | 5                    |
| Comprehension                         | 10                   |
| Application                           | 15                   |
| Analysis                              | 25                   |
| Evaluate                              | 25                   |
| Create                                | 20                   |



## Master of Engineering Subject Code: 3720222

## **Practical List:**

- 1) Compare the speedup of the parallel implementation of Quick sort using MPI (On a cluster of 5 Nodes) and OpenMP (Shared Memory Implementation on multicore machine).
- 2) Compare the speedup of the parallel implementation of Merge sort using MPI (On a cluster of 5 Nodes) and OpenMP (Shared Memory Implementation on multicore machine).
- 3) Compare the speedup of the parallel implementation of Bitonic sort using MPI (On a cluster of 5 Nodes) and OpenMP (Shared Memory Implementation on multicore machine).
- 4) Compare the speedup of the parallel implementation of Odd-Even transposition sort using MPI (On a cluster of 5 Nodes) and OpenMP (Shared Memory Implementation on multicore machine).
- 5) Implement parallel list ranking algorithm on MPI cluster of 5 Nodes and find it speedup over the sequential implementation.
- .-shi Give parallel implementation (OpenMP/MPI) of Awerbuch-Shiloach algorithm for finding the 6)



## Master of Engineering Subject Code: 3720223 Semester – II Subject Name: Advance Machine Learning

## Type of course: Regular

**Prerequisite:** Machine Learning, Probability Theory

**Rationale:** This course will introduce key concepts in pattern recognition and machine learning; including specific algorithms for classification, regression, clustering and probabilistic modeling. In summary, this course will provide a broad view of the general issues arising in the application of algorithms to analyzing data, common terms used, and common errors made if applied incorrectly.

## **Teaching and Examination Scheme:**

| Tea | aching Sch | neme | Credits |         | Total   |             |        |       |
|-----|------------|------|---------|---------|---------|-------------|--------|-------|
| L   | Т          | Р    | C       | Theor   | y Marks | Practical N | Marks  | Marks |
|     |            |      |         | ESE (E) | PA (M)  | ESE (V)     | PA (I) |       |
| 3   | 0          | 2    | 4       | 70      | 30      | 30          | 20     | 150   |

| Sr No   | Content                                                                                                                                                                                                                                         | Total |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 51.110. | Content                                                                                                                                                                                                                                         | Total |
|         |                                                                                                                                                                                                                                                 | Hrs   |
| 1       | Key concepts, Supervised/Unsupervised Learning, Loss functions and generalization, Probability Theory, Parametric vs Non-parametric methods,                                                                                                    | 8     |
|         | Elements of Computational Learning Theory                                                                                                                                                                                                       |       |
|         | Ensemble Learning, Bagging, Boosting, Random Forest                                                                                                                                                                                             |       |
| 2       | Kernel Methods for non-linear data, Support Vector Machines, Kernel<br>Ridge Regression, Structure Kernels, Kernel PCA, Latent Semantic Analysis                                                                                                | 8     |
| 3       | <b>Bayesian methods</b> for using prior knowledge and data, Bayesian<br>inference, Bayesian Belief Networks and Graphical models, Probabilistic<br>Latent Semantic Analysis, The Expectation-Maximisation (EM) algorithm,<br>Gaussian Processes | 8     |
| 4       | <b>Dimensionality Reduction</b> - CCA, LDA, ICA, NMF - Canonical<br>Variates - Feature Selection vs Feature Extraction                                                                                                                          | 10    |
| 5       | Filter Methods - Sub-space approaches - Embedded methods<br>Low-Rank approaches - Recommender Systems<br>.Application areas - Security - Business - Scientific                                                                                  | 9     |



#### Master of Engineering Subject Code: 3720223

| V |                                                                                            |   |  |  |
|---|--------------------------------------------------------------------------------------------|---|--|--|
| 6 | Recent trends in supervised and unsupervised learning algorithm, dimensional reducibility, | 5 |  |  |
|   | feature selection and extraction                                                           |   |  |  |

### **Reference Books:**

- 1. Pattern Recognition and Machine Learning, Christopher M. Bishop
- 2. John Shawe-Taylor and NelloCristianini, Kernel Methods for Pattern Analysis.
- 3. The Elements of Statistical Learning, Springer 2009
- 4. Machine Learning Algorithms, 2<sup>nd</sup> Edition, Giuseppe Bonaccorso, Packt Publication
- 5. TensorFlow Machine Learning, Nick McClure, Packt Publication

#### **Course Outcomes:**

| Sr. No. | CO statement                                                                       | Marks %<br>weightage |
|---------|------------------------------------------------------------------------------------|----------------------|
| CO-1    | Key concepts, tools and approaches for pattern recognition on complex data sets    | 20%                  |
| CO-2    | Kernel methods for handling high dimensional and non-linear patterns               | 25%                  |
| CO-3    | State-of-the-art algorithms such as Support Vector Machines and Bayesian networks. | 25%                  |
| CO-4    | Solve real-world machine learning tasks: from data to inference                    | 15%                  |
| CO-5    | Theoretical concepts and the motivations behind different learning frameworks      | 15%                  |

#### List of Experiments:

- Minimum 10 experiments based on the above contents.
- Mini Project in a group of max. 3 students
- Writing a research paper on selected topic from content with latest research issues in that topic

## **Major Equipments:**

- Latest PCs with related software

## List of Open Source Software/learning website:

- https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-learn-data-science-python-scratch-2/
- https://www.springboard.com/resources/learning-paths/machine-learning-python
- https://www.rstudio.com/online-learning/