

Master of Engineering Subject Code: 3730005 Semester III Business Analytics

Type of Course:

Prerequisite:

Rationale:

Teaching and Examination Scheme:

ching Sch	neme	Credits	Examination Marks				Total
Т	Р	С	Theory	Marks	Practical	Marks	Marks
			ESE	PA	ESE	PA	
			(E)	(M)	Viva (V)	(I)	
0	0	3	70	30	0	0	100
	ching Sch T 0	ching Scheme T P 0 0	ching SchemeCreditsTPC003	ching SchemeCreditsTPCTheoryESE(E)(E)00370	ching SchemeCreditsExamiTPCTheory MarksESEPA(E)(M)0037030	ching SchemeCreditsExamination MarksTPCTheory MarksPracticalESEPAESE(E)(M)Viva (V)0037030	ching SchemeCreditsExamination MarksTPCTheory MarksPractical MarksESEPAESEPA(E)(M)Viva (V)(I)00370300

Sr.	Topics	Teaching
No.		Hours
1	Business analytics: Overview of Business analytics, Scope of Business analytics,	9
	Business Analytics Process, Relationship of Business Analytics Process and	
	organisation, competitive advantages of Business Analytics. Statistical Tools:	
	Statistical Notation, Descriptive Statistical methods, Review of probability	
	distribution and data modelling, sampling and estimation methods overview.	
2	Trendiness and Regression Analysis: Modelling Relationships and Trends in Data,	8
	simple Linear Regression. Important Resources, Business Analytics Personnel, Data	
	and models for Business analytics, problem solving, Visualizing and Exploring	
	Data, Business Analytics Technology	
3	Organization Structures of Business analytics, Team management, Management	9
	Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality,	
	Measuring contribution of Business analytics, Managing Changes. Descriptive	
	Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis,	
	Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the	
	business analytics Process, Prescriptive Modelling, nonlinear Optimization	
4	Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical	10
	Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting	
	Models for Time Series with a Linear Trend, Forecasting Time Series with	
	Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate	
	Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle	
	Simulation Using Analytic Solver Platform, New-Product Development Model,	
	Newsvendor Model, Overbooking Model, Cash Budget Model	
5	Decision Analysis: Formulating Decision Problems, Decision Strategies with the	8
	without Outcome Probabilities, Decision Trees, The Value of Information, Utility	
	and Decision Making	
6	Recent Trends in : Embedded and collaborative business intelligence, Visual data	4
	recovery, Data Storytelling and Data journalism	

References:

- 1. Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press
- 2. Business Analytics by James Evans, persons Education

GUJARAT TECHNOLOGICAL UNIVERSITY Master of Engineering Subject Code: 3730005

Course Outcomes:

After learning the course the students should be able to :

Sr. No	CO statement	Marks % weightage
CO-1	Students will demonstrate knowledge of data analytics	
CO-2	Students will demonstrate the ability of think critically in making	
002	decisions based on data and deep analytics	
CO-3	Students will demonstrate the ability to use technical skills in	
	predicative and prescriptive modeling to support business decision-	
	making	
CO-4	Students will demonstrate the ability to translate data into clear,	_
	actionable insights	
	ouestoneagers.	

Master of Engineering Subject Code: 3730006 Semester III Industrial Safety

Type of Course:

Prerequisite: Nil

Rationale: Safety is major issue in any industry; awareness about safety helps students from any major accidents, Different rules regulation of safety helps students apply it in industry for performance and productivity improvements. Knowledge of Maintenance, its type and application gives better work environments and helps industry from major shutdown. Different maintenance tools and techniques for different situation and industry equipment's helps students to apply it in real life industry problems.

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical	Marks	Marks
				ESE	PA	ESE	PA	
				(E)	(M)	Viva (V)	(I)	
3	0	0	3	70	30	0	0	100

Sr.	Topics	Teaching
No.		Hours
1	Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient	08
	points of factories act 1948 for health and safety wash rooms drinking water	
	lavouts, light, cleanliness, fire, guarding, pressure vessels, etc. Safety color codes.	
	Fire prevention and firefighting, equipment and methods.	
2	Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for	08
	maintenance, Maintenance cost & its relation with replacement economy, Service	
	life of equipment	
3	Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general	10
	sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun,	
	111. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed	
	iubrication, vii. Ring iubrication, Definition principle and factors affecting the	
1	Corrosion. Types of corrosion, corrosion prevention methods	00
4	applications sequence of fault finding activities show as decision tree draw	09
	decision tree for problems in machine tools hydraulic pneumatic automotive	
	thermal and electrical equipment's like I Any one machine tool ii Pump iii Air	
	compressor, iv. Internal combustion engine. v. Boiler, vi. Electrical motors, Types	
	of faults in machine tools and their general causes	
5	Periodic and preventive maintenance: Periodic inspection-concept and need,	10
	degreasing, cleaning and repairing schemes, overhauling of mechanical	
	components, overhauling of electrical motor, common troubles and remedies of	
	electric motor, repair complexities and its use, definition, need, steps and advantages	
	of preventive maintenance. Steps/procedure for periodic and preventive	
	maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel	
	generating (DG) sets, Program and schedule of preventive maintenance of	
	mechanical and electrical equipment, advantages of preventive maintenance. Repair	
	cycle concept and importance	

GUJARAT TECHNOLOGICAL UNIVERSITY Master of Engineering

Subject Code: 3730006

Distribution of marks weightage for cognitive level

Bloom's Taxonomy for Cognitive Domain	Marks
	% weightage
Recall	10
Comprehension	20
Application	25
Analysis	25
Evaluate	10
Create	10

References:

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London

Course Outcomes:

After learning the course the students should be able to :

- 10¹⁰

Sr.	CO statement	Marks % weightage
No.		
CO-1	Understand Importance of Safety and Important related Acts.	20
CO-2	Apply Maintenance techniques as per requirements and able to	30
	compare for with different technique for better performance.	
CO-3	Understand wear and corrosion, its causes and remedial actions for	30
	preventions.	
CO-4	Demonstrate fault tracing, its methods and application.	20

- **1**

Master of Engineering Subject Code:3730007 Semester III Operation Research

Type of Course: Open Elective

Prerequisite:Nil

Rationale: Operation research techniques are useful for solving real life Industrial problem, Problems can be of Manufacturing, Service and supply related. Different techniques help for optimization of linear as well as non - linear type problem.

Teaching and Examination Scheme:

Tea	ching Scl	neme	Credits	Examination Marks				Total
L	Т	Р	C	Theory	Marks	Practical	Marks	Marks
				ESE	PA	ESE	PA	
				(E)	(M)	Viva (V) 🥒	(I)	
3	0	0	3	70	30	0	0	100

Sr. No.	Topics	Teaching Hours
1	Linear Programming Problems:	12
	Formulation of a LPP, - graphical solution, simplex method, duality in LPP,	
	sensitivity analysis, Integer linear programming, revised simplex method,	
	parametric linear programming, Dynamic programming under certainty, Dynamic	
	programming approach for solving LPP.	
2	Project Management, Inventory Control and Decision Making:	10
	CPM, PERT, Project time cost trade off, Resource allocation, Deterministic	
	inventory control models, Probabilistic inventory control models, Decision making	
	process, Decision making under uncertainty, Decision making under risk, Decision	
	tree analysis, Theory of games, Pure strategies, Mix strategies, Solutions method	
2	classical Optimization Matheday	06
3	Classical Optimization Methods:	06
	Single variable optimization, Constrained and unconstrained multi-variable	
	Tucker conditions	
4	Non linear Programming:	10
7	Constrained Ontimization Techniques	10
	Unimodal function Unrestricted search Exhaustive search Dichotomous search	
	Interval halving method, Fibonacci method, Golden section method	
	Unconstrained Optimization Techniques	
	Direct Search Methods: Random search methods, Grid search method, Univariate	
	method,	
	Constrained Optimization Techniques	
	Direct Methods: Random search method, Sequential linear programming.	
5	Evolutionary Algorithms	04
	An overview of evolutionary algorithms, Simulated annealing algorithm, Genetic	
	argonum, rance swam opumization	

Distribution of marks weightage for cognitive level

Bloom's Taxonomy for Cognitive Domain	Marks
	% weightage

Master of Engineering Subject Code:3730007

Recall	10
Comprehension	10
Application	25
Analysis	25
Evaluate	20
Create	10

References:

- 1. J. K. Sharma, Operation Research, Theory and Application, Macmillan Publishers India Ltd, 2013
- 2. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 3. S.S.Rao, Engineering Optimization Theory and Practice, New Age International (P) Ltd, Publishers.
- 4. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

Course Outcomes:

After learning the course:

Sr.	CO statement	Marks % weightage
No.		
CO-1	Students should able to apply the Liner programming techniques to	30
	solve problems of real life applications and carry out post	
	optimality analysis.	
CO-2	Students should able to apply the concepts of non-linear	30
	programming and apply them for real life problems.	
CO-3	Students should able to obtain quantitative solutions in business	20
	decision making under conditions of certainty, risk and uncertainty.	
CO-4	Students should able to implement various scientific tools and	20
	models that are available in the subject to take decisions in a	
	complex environment.	

Master of Engineering Subject Code: 3730208 Semester – III Subject Name: Cloud Computing

Type of course:

Prerequisite: opertating system, networking

Rationale: Organizations look for cloud solutions rather than investing and maintaining infrastructure on their part. Since the Cloud structure is complex, investigations are necessary from security perspective. Organizations are looking for Cloud service providers which are stable, secure and offer more than one layer of security for their client's data. This course will help in implementing cloud architecture, analyzing the security issues, writing incidence report and deploying the security architecture for cloud platform.

Teaching and Examination Scheme:

Tea	aching Sch	neme	Credits	Examination Marks				Total
L	Т	Р	C	Theor	Theory Marks Practical Marks			Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	0	3	70	30	0	0	100

Content:

Sr. No.	Content	Total
		Hrs
1	Introduction to Cloud Computing	4
	Online Social Networks and Applications, Cloud introduction and overview,	
	Different clouds, Risks, Novel applications of cloud computing	
2	Unit 2:	11
	Cloud Computing Architecture	
	Requirements. Introduction Cloud computing architecture. On Demand Computing	
	Virtualization at the infrastructure level. Security in Cloud computing	
	environments. CPU Virtualization. A discussion on Hypervisors Storage	
	Virtualization Cloud Computing Defined The SPI Framework for Cloud Computing	
	The Traditional Software Model The Cloud Services Delivery Model	
	The Hudden Hoder, The cloud Services Derivery Woder	
	Cloud Deployment Models	
	Key Drivers to Adopting the Cloud. The Impact of Cloud Computing on Users.	
	Governance in the Cloud. Barriers to Cloud Computing Adoption in the Enterprise	
3	Unit 3:	10
	Security Issues in Cloud Computing	
	Infrastructure Security, Infrastructure Security: The Network Level, The Host	
	Level, The Application Level, Data Security and Storage, Aspects of Data Security,	
	Data Security Mitigation Provider Data and Its Security	
		1

Page 1 of 3

Master of Engineering Subject Code: 3730208

	Identity and Access Management Trust Boundaries and IAM, IAM Challenges, Relevant IAM Standards and Protocols for Cloud Services IAM Practices in the Cloud, Cloud Authorization Management	
4	Unit 4:	11
	Security Management in the Cloud	
	Security Management Standards, Security Management in the Cloud, Availability	
	Drive ev Legues	
	Privacy Issues	
	Privacy Issues, Data Life Cycle, Key Privacy Concerns in the Cloud, Protecting	
	Privacy, Changes to Privacy Risk Management and Compliance in Relation to Cloud	
	Computing, Legal and Regulatory Implications, U.S. Laws and Regulations,	
	International Laws and Regulations	
5	Unit 5:	8
5	Audit and Compliance	0
	Internal Delicy Compliance Covernance Rick and Compliance (CPC)	
	Degulatory/Eviternal Compliance, Cloud Security Alliance, Auditing the Cloud for	
	Compliance, Society of a Cloud	
	Compliance, Security-as-a-Cloud	
6		4
U	Introduction to hybrid cloud	-
	Hybrid cloud management, Managing the Hybrid workloads, Development and	
	Deployment in Hybrid cloud	
1		

Reference Books:

1) Cloud Computing Explained: Implementation Handbook for Enterprises, John Rhoton, Publication Date: November 2, 2009

2) Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance (Theory in Practice), Tim Mather, ISBN-10: 0596802765,O'Reilly Media, September 2009

3) Hybrid Cloud For Dummies 2nd Edition

by Judith S. Hurwitz, Marcia Kaufman, Fern Halper, Daniel Kirsch

Course Outcomes:

Sr.	CO statement	Marks % weightage
No.		
CO-1	Implement a public cloud instance using a public cloud service provider	50

Master of Engineering Subject Code: 3730208

Subject Souch Droomoo								
CO-2	Develop a risk-management strategy for moving to the Cloud	20						
CO-3	Identify security aspects of each cloud model	20						
CO-4	Apply trust-based security model to different layer	10						

List of Experiments:

- 1. Install public cloud. Analyze how handling in public cloud differs from private cloud?
- 2. Implement phishing attack on cloud.
- 3. Write a case study of incidence reporting in case of breach of cloud security.
- 4. Use the services offered by Azure, AWS and GOOGLE. Compare them.
- 5. Use open source tool to evaluate performance of cloud platform.
- 6. Prepare a case study of security policy or service level agreement is signed by cloud service provider.
- 7. Prepare a case study of facebook, twitter data which is stored on cloud. Write a program to inject malware in this data.
- 8. Implement attribute based encryption algorithm for cloud.
- 9. Implement compartmentalization techniques, the provider can use to prevent access into virtual container of one customer by other customers.
- 10. Implement identity management mechanism in cloud.

Major Equipment:

Computer systems having following minimum technical configurations

Processor:i3 or i5 or higher

RAM : minimum 4 GB

HDD:1 TB

Internet and wifi connectivity

Licence Window/Linux operating system

List of Open Source Software/learning website:

https://npte;.ac.in

GUJARAT TECHNOLOGICAL UNIVERSITY Master of Engineering Subject Code: 3730209 Semester III SUBJECT NAME: High Performance Scientific Computing

Type of course: Elective

Prerequisite: Linear Algebra and Numerical Methods, Parallel Algorithms

Rationale: Computation and simulation are increasingly important in all aspects of science and engineering. At the same time writing efficient computer programs to take full advantage of current computers is becoming increasingly difficult. Even laptops now have 4 or more processors, but using them all to solve a single problem faster often requires rethinking the algorithm to introduce parallelism, and then programming in a language that can express this parallelism. Writing efficient programs also requires some knowledge of machine arithmetic, computer architecture, and memory hierarchies. High performance *programming* is an important aspect of high performance scientific computing, and so the main theme of the course is the use of basic tools and techniques to improve your efficiency as a computational scientist.

Teaching and Examination Scheme:

Tea	aching Sch	neme	Credits	Examination Marks					Total
L	Т	Р	С	Theor	Theory Marks Practical Marks			Marks	Marks
				ESE (E)	PA (M)	þ	ESE (V)	PA (I)	
3	0	0	3	70	30		0	0	100

Content:

Sr.	Content	Total	%
No.		Hrs	Weightage
1	Introduction: Single Processor Computing, Parallel Computing, Parallel System	3	6
	Organization		
2	Numerical Linear Algebra, High Performance Linear Algebra, Numerical	5	10
	Treatment of Differential Equations		
3	Applications: Molecular Dynamics, Sorting, Graph Analytics, N-body	7	15
	Problems, Monte Carlo Methods, Computation Biology		
4	Interactive Python using IPython, and the IPython Notebook, Python scripting	10	21
	and its uses in scientific computing, Subtleties of computer arithmetic that can		
	affect program correctness		
5	Fortran 90, a compiled language that is widely used in scientific computing,	10	21
	Makefiles for building software and checking dependencies, Analyse the cost of		
	data communication. Registers, cache, main memory, and how this memory		
	hierarchy affects code performance.		
6	OpenMP on top of Fortran for parallel programming of shared memory	13	27
	computers, such as a multicore laptop., MPI on top of Fortran for distributed		
	memory parallel programming, such as on a cluster, Parallel computing in		
	IPython, Debuggers, unit tests, regression tests, verification and validation of		
	computer codes, Graphics and visualization of computational results using		
	Python		
	Total	48	100%

After learning the course the students should be able to:

Sr.	CO statement	Marks
No.		% weightage

Master of Engineering Subject Code: 3730209

CO-1	demonstrate the knowledge of numerical computing using an appropriate	10%
	programming language.	
CO-2	be competent in experimental computing in a numerical context and of the	20%
	optimization of algorithms on high performance architectures.	
CO-3	be able to reason about the accuracy of mathematical and numerical models	25%
	of real physical phenomena.	
CO-4	have an awareness of the modern field of computational science and	25%
	engineering and of the impact of high performance computing on science	
	and industry.	
CO-5	have an understanding of the various paradigms of high performance	20%
	computing and their potential for performance and programmability.	

Distribution of marks weightage for cognitive level

Bloom's Taxonomy for Cognitive Domain		Marks
		% weightage
Recall		5
Comprehension		10
Application	S	20
Analysis		25
Evaluate		25
Create		15

Reference Books:

- 1. Scott, Clark, and Bagheri, Scientific Parallel Computing.
- 2. Parallel Programming for Multicore and Cluster Systems by Thomas Rauber and Gudula Runger.
- 3. Using OpenMP: Portable Shared Memory Parallel Programming by Chapman, Jost, and vander Pas.
- 4. An Introduction to High Performance Scientific Computing, Lloyds D. Fosdick, Elizabeth R. Jessup, Carolyn J. C. Schauble, Gitta Domik
- 5. Heath, M.T. Scientific Computation An Introductory Survey, McGraw-Hill, 1997.
- 6. Buyya, R. High Performance Cluster Computing: Programming and Applications, Prentice Hall, Upper Saddle River, New Jersey 1999.s

GUJARAT TECHNOLOGICAL UNIVERSITY Master of Engineering

Subject Code: 3730210 Semester – III Subject Name: Complier for HPC

Type of course: Elective

Prerequisite: Computer Organization and Architecture, Basics of Compiler Design

Rationale: Optimizing compilers play a critical role in modern computer systems ranging from mobile devices to supercomputers. Compilers can optimize for performance, power consumption and/or code size. Practically all computer scientists and engineers may benefit for a deep knowledge of compiler optimizations: programmers and application optimizers write programs that are better optimized by the compiler, computer designers design hardware features that are easy to use by compilers, and finally compiler writers develop new compiler optimizations. This course covers optimizations and aspects of the compiler back-end and middle-end such as: data-flow analysis, control Flow analysis, instruction level parallelism, memory hierarchy optimizations, data level parallelism and thread level parallelism.

Teaching and Examination Scheme:

Tea	aching Sch	neme	Credits		Examination Marks			
L	Т	Р	С	Theor	ry Marks 💦 🔪	Practical I	Marks	Marks
				ESE (E)	PA (M)	🥌 ESE (V)	PA (I)	
3	0	0	3	70	30	0	0	100

Content:

Sr.	Content	Total	%
No.		Hrs	Weightage
1	High Performance Systems, Structure of a Compiler, Programming Language	6	12
	Features, Languages for High Performance.		
2	Data Dependence: Data Dependence in Loops, Data Dependence in	10	21
	Conditionals, Data Dependence in Parallel Loops, Program Dependence Graph.		
	Scalar Analysis with Factored Use-Def Chains: Constructing Factored Use-		
	Def Chains, FUD Chains for Arrays, Induction Variables Using FUD Chains,		
	Constant Propagation with FUD Chains, Data Dependence for Scalars. Data		
	Dependence Analysis for Arrays, Array Region Analysis, Pointer Analysis, I/O		
	Dependence, Procedure Calls,		
	Inter-procedural Analysis.		
3	Loop Restructuring: Simple Transformations, Loop Fusion, Loop Fission,	10	21
	Loop Reversal, Loop Interchanging, Loop Skewing, Linear Loop		
	Transformations, Strip-Mining, Loop Tiling, Other Loop Transformations, and		
	Inter-procedural Transformations.		
	Optimizing for Locality: Single Reference to Each Array, Multiple		
	References, General Tiling, Fission and Fusion for Locality.		
4	Concurrency Analysis: Concurrency from Sequential Loops, Concurrency	10	21
	from Parallel Loops, Nested Loops, Round off Error, Exceptions and		
	Debuggers.		
	Vector Analysis: Vector Code, Vector Code from Sequential Loops, Vector		
	Code from For all Loops, Nested Loops, Round off Error, Exceptions, and		
	Debuggers, Multi-vector Computers.		
5	Message-Passing Machines: SIMD Machines, MIMD Machines, Data Layout,	10	21
	Parallel Code for Array Assignment, Remote Data Access, Automatic Data		
	Layout, Multiple Array Assignments.		
	Scalable Shared-Memory Machines: Global Cache Coherence, Local Cache		

Master of Engineering Subject Code: 3730210

	Coherence, Latency Tolerant Machines.		
6	Recent trends in compiler design for high performance computing and message	2	4
	passing machines and scalable shared memory machine.		
	Total	48	100%

After learning the course the students should be able to:

Sr.	CO statement	Marks
INO.		% weightage
CO-1	Be familiar with the structure of compiler	20%
CO-2	Understand the performance characteristics of modern processors	40%
CO-3	Have experience with algorithms for automatically taking advantage of	40%
	SIMD, SIMT, and MIMD parallelism	

Distribution of marks weightage for cognitive level

Bloom's Taxonomy for Cognitive Domain	.6.	Marks % weightage
Recall		15
Comprehension	07	20
Application		15
Analysis		20
Evaluate		20
Create	0.0	10

Reference Books:

- 1. Muchnick, Steven S, *Advanced compiler design implementation*, Morgan Kaufmann, cop. 1997. ISBN: 978-1558603202
- 2. Michael Wolfe, *High-Performance Compilers for Parallel Computing*, Pearson
- 3. Aho, Alfred V, *Compilers : Principles, Techniques, and Tools,* Addison-Wesley, cop. 2007. ISBN: 9780321486813
- 4. Allen, Randy; Kennedy, Ken, *Optimizing Compilers for Modern Architectures : A Dependence-Based Approach*, Morgan Kaufmann Publishers, cop. 2002. ISBN: 1-55860-286-0

Practical List:

- 1) Setup LLVM on your machine. You should now have three directories (SimplePass, CellularAutomata, MysoreScript), one for each example.In each of these, you will find two build directories.
- 2) The SimplePass example must be modified to count instructions per basic block.
- 3) MysoreScript is a very simple language that provides a JavaScript-like model. You should improve the system using **improved dispatch tables**, replacing the linked list. Try adding either a sparse tree or inverted dispatch tables (where each selector has a class-to-method mapping, rather than each class having a selector-to-method mapping) and modify the compiler to do lookups inline, rather than calling out to C code. Whichever option you pick, show some example code where it gives a performance increase and be prepared to justify whether this is representative.
- 4) This is a simple compiler for a domain-specific language for generating cellular automata. The language itself is intrinsically parallel—you define a rule for updating each cell based on its existing value and

Master of Engineering Subject Code: 3730210

neighbours—but the compiler executes each iteration entirely sequentially, one cell at a time. Introduce the following parallelism into this system.

Vectorised implementation: The current version is not amenable to automatic vectorisation because the edge and corner implementations are not the same as the values in the middle. Modify the compiler to generate three versions of the program: one for edges, one for corners, and one for the middle. Make the edge and middle implementations simultaneously operate on 4 (or more) cells by using vector types in the IR. Be careful with the global registers!

List of Open Source Software/learning website:

ouestionPapers.co