

Master of Engineering Subject Code: 3730005 Semester III Business Analytics

Type of Course:
Prerequisite:
Rationale:
Teaching and Examination Scheme:

Tea	ching Scl	neme	Credits		Exami		Total	
L	T	P	С	Theory Marks		Practical	Marks	Marks
				ESE	PA	ESE	PA	
				(E)	(M)	Viva (V)	(I)	
3	0	0	3	70	30	0	0	100

-	m .	75 1 t
Sr.	Topics	Teaching
No.	.60	Hours
1	Business analytics: Overview of Business analytics, Scope of Business analytics,	9
	Business Analytics Process, Relationship of Business Analytics Process and	
	organisation, competitive advantages of Business Analytics. Statistical Tools:	
	Statistical Notation, Descriptive Statistical methods, Review of probability	
	distribution and data modelling, sampling and estimation methods overview.	
2	Trendiness and Regression Analysis: Modelling Relationships and Trends in Data,	8
	simple Linear Regression. Important Resources, Business Analytics Personnel, Data	
	and models for Business analytics, problem solving, Visualizing and Exploring	
	Data, Business Analytics Technology	
3	Organization Structures of Business analytics, Team management, Management	9
	Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality,	
	Measuring contribution of Business analytics, Managing Changes. Descriptive	
	Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis,	
	Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the	
	business analytics Process, Prescriptive Modelling, nonlinear Optimization	
4	Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical	10
	Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting	
	Models for Time Series with a Linear Trend, Forecasting Time Series with	
	Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate	
	Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle	
	Simulation Using Analytic Solver Platform, New-Product Development Model,	
_	Newsvendor Model, Overbooking Model, Cash Budget Model	
5	Decision Analysis: Formulating Decision Problems, Decision Strategies with the	8
7	without Outcome Probabilities, Decision Trees, The Value of Information, Utility	
	and Decision Making	
6	Recent Trends in: Embedded and collaborative business intelligence, Visual data	4
	recovery, Data Storytelling and Data journalism	
	yr on a major wa	

References:

- 1. Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press
- 2. Business Analytics by James Evans, persons Education

Master of Engineering Subject Code: 3730005

Course Outcomes:

Sr.	CO statement	Marks % weightage
No.		
CO-1	Students will demonstrate knowledge of data analytics	
CO-2	Students will demonstrate the ability of think critically in making	
	decisions based on data and deep analytics	
CO-3	Students will demonstrate the ability to use technical skills in	
	predicative and prescriptive modeling to support business decision-	
	making	
CO-4	Students will demonstrate the ability to translate data into clear,	
	actionable insights	

Master of Engineering Subject Code: 3730006 Semester III Industrial Safety

Type of Course:

Prerequisite: Nil

Rationale: Safety is major issue in any industry; awareness about safety helps students from any major accidents, Different rules regulation of safety helps students apply it in industry for performance and productivity improvements. Knowledge of Maintenance, its type and application gives better work environments and helps industry from major shutdown. Different maintenance tools and techniques for different situation and industry equipment's helps students to apply it in real life industry problems.

Teaching and Examination Scheme:

Tea	Teaching Scheme Credits Examination Marks					Total		
L	T	P	С	Theory Marks		Practical	Marks	Marks
				ESE	PA	ESE	PA	
				(E)	(M)	Viva (V)	(I)	
3	0	0	3	70	30	0	0	100

Sr.	Topics						
	Topics	Teaching Hours					
No.	Industrial sofety, Assident source types multi-said control machanisal and	08					
1	Industrial safety: Accident, causes, types, results and control, mechanical and	08					
	electrical hazards, types, causes and preventive steps/procedure, describe salient						
	points of factories act 1948 for health and safety, wash rooms, drinking water						
	layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes.						
2	Fire prevention and firefighting, equipment and methods.	08					
2	Fundamentals of maintenance engineering: Definition and aim of maintenance	08					
	engineering, Primary and secondary functions and responsibility of maintenance						
	department, Types of maintenance, Types and applications of tools used for						
	maintenance, Maintenance cost & its relation with replacement economy, Service						
3	life of equipment	10					
3	Wear and Corrosion and their prevention: Wear- types, causes, effects, wear	10					
	reduction methods, lubricants-types and applications, Lubrication methods, general						
	sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun,						
	iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed						
	lubrication, vii. Ring lubrication, Definition principle and factors affecting the						
4	corrosion. Types of corrosion, corrosion prevention methods	00					
4	Fault tracing: Fault tracing-concept and importance, decision tree concept, need and	09					
	applications, sequence of fault finding activities, show as decision tree, draw						
	decision tree for problems in machine tools, hydraulic, pneumatic, automotive,						
	thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air						
	compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types						
5	of faults in machine tools and their general causes	10					
5	Periodic and preventive maintenance: Periodic inspection-concept and need,	10					
	degreasing, cleaning and repairing schemes, overhauling of mechanical						
	components, overhauling of electrical motor, common troubles and remedies of						
	electric motor, repair complexities and its use, definition, need, steps and advantages						
	of preventive maintenance. Steps/procedure for periodic and preventive						
	maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel						
	generating (DG) sets, Program and schedule of preventive maintenance of						
	mechanical and electrical equipment, advantages of preventive maintenance. Repair						
	cycle concept and importance						

Master of Engineering Subject Code: 3730006

Distribution of marks weightage for cognitive level

Bloom's Taxonomy for Cognitive Domain	Marks
	% weightage
Recall	10
Comprehension	20
Application	25
Analysis	25
Evaluate	10
Create	10

References:

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London

Course Outcomes:

Sr.	CO statement	Marks % weightage
No.		
CO-1	Understand Importance of Safety and Important related Acts.	20
CO-2	Apply Maintenance techniques as per requirements and able to	30
	compare for with different technique for better performance.	
CO-3	Understand wear and corrosion, its causes and remedial actions for	30
	preventions.	
CO-4	Demonstrate fault tracing, its methods and application.	20

Master of Engineering
Subject Code: 3730008
Semester III
Cost Management of Engineering Projects

Type of	Course:
---------	----------------

Prerequisite:

Rationale:

Teaching and Examination Scheme:

Tea	ching Scl	neme	Credits		Exami	nation Marks	Total	
L	T	P	C	Theory Marks		Practical	Marks	Marks
				ESE	PA	ESE	_PA]
				(E)	(M)	Viva (V)	(I)	
3	0	0	3	70	30	0	0	100

Sr. No.	Topics	Teaching Hours
1	Introduction and Overview of the Strategic Cost Management Process	
2	Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making	
3	Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process	
4	Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing	
5	Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.	

References:

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd

Course Outcomes:

Master of Engineering Subject Code: 3730008

Sr.	CO statement	Marks % weightage
No.		
CO-1		
CO-2		
CO-3		
CO-4		

Master of Engineering Subject Code: 3730009 Semester III Waste to Energy

Type	of	Course:
-------------	----	---------

Prerequisite:

Rationale:

Teaching and Examination Scheme:

Tea	aching Scl	neme	Credits		Examination Marks				
L	T	P	C	Theory	Marks	Practical	Marks	Marks	
				ESE	PA	ESE	PA		
				(E)	(M)	Viva (V)	(I)		
3	0	0	3	70	30	0	0	100	

Sr. No.	Topics	Teaching Hours
1	Introduction to Energy from Waste: Classification of waste as fuel – Agro based,	Hours
	Forest residue, Industrial waste - MSW - Conversion devices - Incinerators, gasifiers, digestors	
2	Biomass Pyrolysis: Pyrolysis - Types, slow fast - Manufacture of charcoal -	
	Methods – Yields and application – Manufacture of pyrolytic oils and gases, yields and applications	
3	Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft	
	gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier	
	burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation	
4	Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic	
	designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed	
	combustors, Design, construction and operation - Operation of all the above biomass	
	combustors	
5	Biogas: Properties of biogas (Calorific value and composition) - Biogas plant	
	technology and status - Bio energy system - Design and constructional features -	
	Biomass resources and their classification - Biomass conversion processes - Thermo	
	chemical conversion - Direct combustion - biomass gasification - pyrolysis and	
	liquefaction - biochemical conversion - anaerobic digestion – Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban	
	waste to energy conversion - Biomass energy programme in India	
	waste to energy conversion. Dismass energy programme in meta	

References:

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996

Master of Engineering Subject Code: 3730009

Course Outcomes:

Sr.	CO statement	Marks % weightage
No.		
CO-1	Understand about Agriculture waste, Industrial waste and their	20
	conversion process	
CO-2	Design construction and operation of Gasifiers	30
CO-3	Design construction and operation of Bio combustors	30
CO-4	Applications of Biomass	20

Master of Engineering Subject Code: 3730806 Semester – III

Subject Name: Mechanics and Manufacturing of Composites

Type of course: Program Elective V

Prerequisite: Nil

Rationale:

The course intents to introduce students to fundamentals of composite materials' mechanics and manufacturing techniques.

Teaching and Examination Scheme:

Tea	Teaching Scheme Credits Examination Marks							Total
L	T	P	С	Theor	Theory Marks Practical Marks			
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	0	3	70	30	0	0	100

Sr. No.	Tota
	Hrs
A'O'Y	
1 Basic concepts and characteristics:	04
Geometric and Physical definitions, natural and man-made composites, Aerospace	and
structural applications, types and classification of composites.	
2 Constituents:	08
Reinforcements: Fibers- Glass, Silica, Kevlar, carbon, graphite, boron, silicon carbide,	and
boron carbide fibers.	
Matrix Materials: Particulate composites, Polymer composites, Thermos	ets,
Thermoplastics, Metal matrix and ceramic composites.	
3 Macromechanics Behavior Lamina:	08
Stress-strain behavior for anisotropic materials; stiffness, compliance and engineeri	ng
constants for orthotropic materials; Stress-strain behavior for plane stress in an orthotropic	oic
material; Stress-strain behavior for lamina of arbitrary orientation; strength of	an
orthotropic lamina; Biaxial strength criteria for an orthotropic materials (Maximum stre	ss,
Maximum strain, Tsai-Hill, Hoffman, Tsai-Wu).	
4 Micromechanical Behavior Lamina:	06
Determination of constants, Elasticity approach to stiffness, particulate composite, Fibe	er-
reinforced composites, tensile and compressive strength in fiber direction, transver	rse
stiffness and strength, prediction of shear strength, Failure modes.	
5 Short-Fiber Composites:	06
Theories of Stress Transfer, Modulus and Strength of Short-Fiber Composites, Ribbo	n-
Reinforced Composites.	

Master of Engineering Subject Code: 3730806

6	Analysis of Laminates:	06
	Laminate Stress-Strains behavior, Variation of Stresses in a Laminate, Resultant Forces	
	and Moments: Synthesis of Stiffness Matrix, Laminate Description System, Construction	
	and Properties of Special Laminates, Determination of Laminae Stresses and Strains,	
	Analysis of Laminates after Initial Failure, Hygrothermal Stresses in Laminates, Bending	
	and Buckling of laminated plates Special Cases: Symmetric, Antisymmetric and	
	Unsymmetric laminates. Design of laminates.	
7	Performance of Composites:	03
	Static Mechanical Properties (Tensile, Compressive, Flexural, In-plane shear, Interlaminar	
	shear strength), Fatigue performance, Impact properties, Environmental effects, Creep and	
	Fracture behaviour.	
8	Manufacturing:	04
	Degree of Cure, Viscosity, Resin Flow, Consolidation, Gel-Time Test, Shrinkage, Voids;	
	moulding methods, filament winding, pultrusion, Quality inspection. Joining: Pin bearing,	
	adhesive bonding.	

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
20	20	20	20	10	10			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Agarwal, B.D. and Broutman, L.J., Analysis and Performance of Fiber Composites, Wiley India.
- 2. Mallick P. K., Fiber-Reinforced Composites Materials, Manufacturing and Design, CRC Press.
- 3. Jones R M, Mechanics of Composite Materials, CRC Press.
- 4. Daniel, I. M. and Ishai, O., Engineering Mechanics of Composite Materials, Oxford University Press

Course Outcomes:

Sr.	CO statement	Marks %
No.		weightage
CO-1	Able to analyse FR composites materials of various constituents.	30
CO-2	Understand fundamentals of manufacturing of composite material.	40
CO-3	Design components for various applications using composites	30

Master of Engineering Subject Code: 3730806

List of Open Source Software/learning website:

- 1. The concerned faculty member shall provide the list of peer reviewed Journals and Tier-I and Tier-II Conferences relating to the subject (or relating to the area of thesis for seminar) to the students in the beginning of the semester.
- 2. NPTEL

Master of Engineering Subject Code: 3730808 Semester – III

Subject Name: Robotics Engineering

Type of course: Program Elective

Prerequisite: Zeal to learn the Subject

Rationale:

This subject deals with study of robot actuators, kinematics, dynamics and motion control of robotic manipulators which is useful for proper design and selection of robot manipulators.

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits	Examination Marks				Total
L	T	P	С	Theor	y Marks	Practical N	Marks	Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	0	3	70	30	0	0	100

Sr. No.	Content	Total Hrs
1	General considerations of Robotic Manipulator Automation - Concept, Need, Automation in Production System, Principles and Strategies of Automation, Basic Elements of an Automated System, History of robot; Application of Robot, Geometric configurations, Work volumes and Degree of freedoms; Robot actuators and drives; Analysis of Robotic inaccuracies and resolutions.	08
2	Kinematics of Robotic Manipulator Service Index of different configurations; Position, velocity and acceleration analysis of various robot configuration, Jacobian, Homogeneous transformation; Direct Kinematic; Inverse Kinematics; D-H representation.	08
3	Forces in Manipulators Statics and dynamics of robot manipulator; Considerations of forces, Moments and torques for various basic robotic configurations; Joint torque and force calculation, Counter balancing systems	10
4	Trajectory Generation Basics of trajectory planning, Joint space vs. Cartesian space descriptions, Joint space trajectory planning, Cubic polynomials; Higher order polynomials; Linear function with parabolic blends; Numerical based on different motion trajectories, Cartesian space trajectories.	05
5	Motion Control of Robotic manipulators Robotic open and closed loop control systems, Second order systems, Non –linear closed loop equation of motion, Error controlled Robotic dynamics, Control of Single axis robotic arm, Generalized motion control laws for robotic manipulators, Common control system for industrial robots, simple robotic manipulator, Independent joint PID control, Independent joint PID control with effective joint inertia, Force control of robotic manipulator, Tracking error analysis, Coordinated movement	06
6	Machine Vision System:	06

Master of Engineering Subject Code: 3730808

Vision System Devices, Image acquisition, Masking, Sampling and quantisation, Image Processing Techniques , Noise reduction methods, Edge detection, Segmentation. Robot Programming: - Methods of robot programming, lead through programming, motion interpolation, branching capabilities, WAIT, SIGNAL and DELAY commands, subroutines, Programming Languages: Introduction to various types such as RAIL and VAL II etc, Features of type and development of languages for recent robot systems.

Reference Books:

- 1. A Robot Engineering Textbook, Mohsen Shahinpoor, Harper and Row, Publisher, New York.
- 2. Mechanical Design of Robots, Eugene I. Rivin, McGraw Hill Book Company, New York.
- 3. Introductin to Robotics: Analysis, Control, Applications, Saeed Niku, John Wiley & Sons.
- 4. Introduction to Robotics, S K Saha, Tata McGraw-Hill.
- 5. Robotics control, sensing, vision and intelligence, K S Fu, R C Gonzalez, CSG Lee, Tata McGraw Hill Edition.
- 6. Introduction to robotics, John J Craig, Pearson/Prentice Hall, Third edition.
- 7. Industrial Automation, W.P. David, John Wiley and Sons.

Course Outcome:

After learning the course:

Sr. No.	Course Outcome	Percentage weightage
CO-1	Students will able to understand the workspace and degree of freedom of	20%
	various robot configurations.	
CO-2	Students will able to learn about forward and inverse kinematics of robotic	20%
	manipulators.	
CO-3	Students will able to calculate static and dynamic forces and torques of	20%
	manipulator. This will help in selection of robotic actuators.	
CO-4	Students will able understand the trajectory generation of robotic	20%
	manipulators.	
CO-5	Students will able to select the various controllers of robotic manipulators	20%
	and machine vision systems.	

List of Open Source Software/learning website:

NPTEL Course

RoboAnalyzer, Scilab

Master of Engineering Subject Code: 3730809 Semester – III

Subject Name: Rapid Prototyping

Type of course: Program Elective V

Prerequisite: Nil

Rationale:

The idea of building a three dimensional object using two dimensional cross sections is done by Rapid Prototyping (RP). Rapid Prototyping is present demand of Industry that defined as a group of techniques used to quickly fabricate a scale model of a part or assembly using three-dimensional computer aided design (CAD) data. Many designers and companies use prototypes and models for the purpose of product and functionality testing of new designs they can also be used to obtain customer feedback for new products. This subject helps students to visualize product and its features and analysis for new product development.

Teaching and Examination Scheme:

Tea	aching Sch	neme	Credits	Examination Marks				Total
L	T	P	C	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	0	3	70	30	0	0	100

Sr. No.	Contents	Total
		Hrs
1	Product Development Cycle and Influence of Innovations on Product Development:	08
	Impact on economy, export competitiveness, design as a strategy to win international market	
	and Innovation process	
2	Rapid Product Development - As Overview virtual prototyping and testing technology,	08
	Physical Prototyping and Rapid Manufacturing technologies and Synergic Integration	
	Technologies	
3	Virtual Pro-typing and Testing:	08
	Geometric modeling: Types of Geometric models and Solid Models	
	Reverse engineering: Acquiring Point Data, Constructing 3D model and Applications.	
	Virtual augmented reality: Requirement of devices and technologies and applications	
	Computer Aided Engineering: Application of FEA in Engineering, the concept of	
	discretization, steps in FEA and automatic mesh generation. Design for X: Design for	
	manufacture and design for assembly and other facets of DFX.	
4	Physical Prototyping and Rapid Manufacturing	08
	Computer Numerical Control: Comparison between NC and conventional machines,	
	features of CNC Machine Tool and programming	
	Robotics: classification, programming, sensors and applications	
	Computer Aided Process Planning: Methodology, evaluation, types, CAD/CAM	
	Integration and CAPP Features	

Master of Engineering Subject Code: 3730809

Subject Couct C. Cooos	
Rapid Prototyping: dawn of slice age, benefits, applications, important issues and popular	
RP process	
Rapid Tooling: Indirect rapid tooling process	
Synergic Integration:	06
Concurrent Engineering: Benefits, methodology, integration and transactions	
Product Data Management: Product data classifications, Process Management and	
benefits	
Computer Integrated Manufacturing: Components, barriers to CIM. Implementation,	
case study, development and research	
Rapid Prototyping and Rapid Tooling:	07
Methods, Stereo-lithography, Fused-deposition modeling, Selective laser sintering,	
Laminated-object manufacturing, Ballistic particle Manufacturing, Solid base curing and	
Direct manufacturing and rapid tooling	
Total Hours	45
	Rapid Prototyping: dawn of slice age, benefits, applications, important issues and popular RP process Rapid Tooling: Indirect rapid tooling process Synergic Integration: Concurrent Engineering: Benefits, methodology, integration and transactions Product Data Management: Product data classifications, Process Management and benefits Computer Integrated Manufacturing: Components, barriers to CIM. Implementation, case study, development and research Rapid Prototyping and Rapid Tooling: Methods, Stereo-lithography, Fused-deposition modeling, Selective laser sintering, Laminated-object manufacturing, Ballistic particle Manufacturing, Solid base curing and Direct manufacturing and rapid tooling

Suggested Specification table with Marks (Theory):

	Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level		
10	10	30	20	20	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- (1) Rapid Product Development- Synergic integration of time-compression technologies K. P. Karunakaran, V. P. Bapat, Sreenath Babu Akula P. D. Solanki Gaurav Gupta, V.R. Prasanth, Saket Anand, Arnab Sarkar and S. Venkatkrishnan
- (2) Manufacturing Processes for Engineering Materials Serope Kalpakjion and Steven R. Schmid-Pearson Education

Course Outcomes:

Sr. No.	CO statement	Marks % weightage
CO-1	Able to Understand virtual prototyping and testing of technology.	30
CO-2	Able to understand the importance of Physical Prototyping,	40

Master of Engineering Subject Code: 3730809

CO-3	Able to understand Rapid Manufacturing technologies and Synergic Integration	30
	Technologies in the present technological era	

Term Work: Nil

List of Experiments: Nil

Major Equipment: Nil

List of Open Source Software/learning website:

- 1. The concerned faculty member shall provide the list of peer reviewed Journals and Tier-I and Tier-II Conferences relating to the subject (or relating to the area of thesis for seminar) to the students in the beginning of the semester.
- 2. NPTEL
- 3. https://en.wikipedia.org/wiki/Rapid_prototyping
- 4. http://www.factoryoffactories.com/rapidprotot.htm

Master of Engineering Subject Code: 3730810 Semester – III

Subject Name: Micro and Nano Manufacturing System

Type of course: Program Elective V

Prerequisite: Nil

Rationale:

Subject is designed to understand the principles of various micro and Nano manufacturing methods. This subject aims for the student to acquire knowledge of the fundamentals of micro and nano-products and of the manufacturing of such products and knowledge of micro and Nano-materials processing methods and techniques.

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits	Examination Marks				Total
L	T	P	C	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	0	3	70	30	0	0	100

Sr. No.	Contents	Total
		Hrs
1	Scope of Nano Technology:	08
	Nano technology Concepts and Applications, Micro- and Nanofabrication, Nano technology	
	in India, Scope for Micro-fabrication, Rise Nano technology Fields, Commercialization	
	Issues of Micro-Nano Technology	
2	Micro-fabrication:	12
	Mechanical Micromachining, Physical Fabrication Methods, Lithography, Processing	
	Setup, Nano Lithography & Manipulation, Precision Micro- and Nano grinding, Use of	
	Spectrometers & Microscopes	
3	Laser-Based Micro and Nanofabrication, Pulsed Water Drop Micromachining, Nano	10
	Materials, Synthesis of Nano materials, Bio Materials, Nano Composites, Development of	
	Nano Particles	00
4	Innovative Applications on Present Devices:	08
	Nano chips, Nanotubes and Nanowires, Integration of chips and microprocessors,	
	Technology Support, Meeting Social Needs	
5	Nano Design & CAD:	07
	Computer Aided Nano Design, VLSI product detailing Finite Element Analysis of	
	Microstructures, 3-D Molecular Modelling	
	Total Hours	45

Master of Engineering Subject Code: 3730810

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks							
R Level	R Level U Level A Level N Level E Level C Level						
10	10	30	30	10	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Micro fabrication & Nano manufacturing by Mark J. Jackson
- 2. ASM handbook on machining
- 3. Springer's Hand book of Nano-technology Bharat Bhusan (Ed.)
- 4. Nanotechnology and Nano electronics WR Fahrner, Springer International Z. Cui, Nanofabrication, Springer, 2008
- 5. Gabor L. Hornyak, H.F. Tibbals, Joydeep Dutta, and John J. Moore, Introduction to Nano science and Nanotechnology, CRC Press, Boca Raton, 2009.

Course Outcomes:

Sr.	CO statement	Marks % weightage
No.		
CO-1	Able to apply the knowledge in mechanics, scaling, design, fabrication	50
	and characterization of Micro and Nano systems.	
CO-2	Able to understand innovative application of Nano technology	50

Term Work: Nil

List of Experiments: Nil

Major Equipment: Nil

List of Open Source Software/learning website:

- 1. The concerned faculty member shall provide the list of peer reviewed Journals and Tier-I and Tier-II Conferences relating to the subject (or relating to the area of thesis for seminar) to the students in the beginning of the semester.
- 2. NPTEL