

Bachelor of Engineering Subject code: 3160002

Contributor Personality Development Program

SEMESTER VI

Type of course: Work-Personality Development

For Year: Pre-final year for all Diploma, Degree & Masters programmes over 2 semesters. For e.g. for Bachelors of Pharmacy and Engineering, the course will be conducted in Semesters V & VI.

Rationale: The Contributor Program aims to accomplish the following outcomes in the lives of students-

- Improve the employability of students by giving them the right work ethic and thinking that employers are looking for.
- Build their confidence with which they can go into any job and contribute meaningfully.
- Improve their ability to engage better in the workplace and to be able to handle the challenges that come up there.
- Build their career-worthiness and help them develop into future-ready contributors with ability to navigate a career in a volatile, changing world.
- Widen their choices of career and success, so that they are able to open up more opportunities for themselves and take up unconventional career pathways.
- Enable them to recognize how they, as technical professionals, can participate and make a positive contribution to their communities and to their state.

Towards this goal, the Contributor Program has been designed to awaken and strengthen students from within, in terms of building positive self-esteem, increasing their confidence level and I-can attitude, improving their aspirations, giving them new methods of thinking, building their cognitive capacities, exposing them to the skills and practices associated with being contributors in the workplace (not mere employees).

The Program content is also designed to expose students to real-world workplace scenarios and sensitize them to some of the challenges faced in society around them, especially in the local communities around them and in their own state of Gujarat.

The Contributor Program syllabus has been evolved and fine-tuned over several years, (a) to address the changing need and contemporary challenges being faced by industry and what employers of today are looking for in the people they hire and (b) by working extensively with universities and students building an appreciation of their challenges and concerns. At the core, the program is guided by the higher ideas and principles of practical Vedanta in work.

Tea	aching Sch	neme	Credits		Examination Marks			
L	Т	P	C	Theor	Theory Marks Practical Marks			Marks
	(2)			ESE (E)	PA (M)	ESE (V)	PA (I)	
2	0	0	2	70	30	30	20	150

COURSE CONTENT :

Sr. No.	Content	Total Hrs
1	Finding Solutions	1.5 hrs Classroom
	The market environment in which organizations are operating, is	engagement
	becoming increasingly dynamic and uncertain. So, employers are	(including self-
	increasingly seeking out people who can innovate and figure out	discovery/
	solutions in the face of any challenge (unlike in the past when it was the	solutioning sessions)

Bachelor of Engineering Subject code: 3160002

people who were most efficient and productive, who were valued by organizations). At the heart of innovation lies this way of thinking of "Inding solutions" rather than "seeing problems or roadblocks". Students learn how to build this way of thinking, in this topic. 2 Creating Value Companies are also looking for employees who do not just work hard, or work efficiently or productively - but those who will make a valuable difference to the fortunes of the company. This difference may come from innovation, but it may also come from focusing on the right things and identifying what really matters – both to the company and to the customers. In this topic, students learn how to build this capability. Same as above 3 Engaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply. Same as above 4 Enlightened self-interest". In this topic, students learn how to develop this way of thinking & Empany Same as above 5 Human-centered thinking & Empany In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human bei		Subject code: 3160002	
"finding solutions" rather than "seeing problems or roadblocks". Students learn how to build this way of thinking, in this topic. 2 Creating Value Companies are also looking for employees who do not just work hard, or work efficiently or productively - but those who will make a valuable difference to the fortunes of the company. This difference may come from innovation, but it may also come from focusing on the right things and identifying what really matters – both to the company and to the customers. In this topic, students learn how to build this capability. Same as above 3 Engaging deply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply. Same as above 4 Enlightened self-interest & collaboration and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working valuents elearn how to develop this way of thinking (going beyond "narrow self-interest"). Same as above 5 Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human		people who were most efficient and productive, who were valued by	
Students learn how to build this way of thinking, in this topic. Image: Creating Value Companies are also looking for employees who do not just work hard, or work efficiently or productively - but those who will make a valuable difference to the fortunes of the company. This difference may come from innovation, but it may also come from focusing on the right things and identifying what really matters – both to the company and to the customers. In this topic, students learn how to build this capability. Same as above Bengaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply. Same as above Collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking & Empaty Same as above Human-centered thinking & Empaty In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer-centricity in servi		organizations). At the heart of innovation lies this way of thinking of	
2 Creating Value Companies are also looking for employees who do not just work hard, or work efficiently or productively - but those who will make a valuable difference to the fortunes of the company. This difference may come from innovation, but it may also come from focusing on the right things and identifying what really matters – both to the company and to the customers. In this topic, students learn how to build this capability. Same as above 3 Engaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply. Same as above 4 Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to dverlop this way of thinking (going beyond "narrow self-interest"). Same as above 5 Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of guerouentric design of products and solutions,		"finding solutions" rather than "seeing problems or roadblocks".	
Companies are also looking for employees who do not just work hard, or work efficiently or productively - but those who will make a valuable difference to the fortunes of the company. This difference may come from innovation, but it may also come from focusing on the right things and identifying what really matters – both to the company and to the customers. In this topic, students learn how to build this capability.Same as above3Engaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.Same as above4Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of		Students learn how to build this way of thinking, in this topic.	
Companies are also looking for employees who do not just work hard, or work efficiently or productively - but those who will make a valuable difference to the fortunes of the company. This difference may come from innovation, but it may also come from focusing on the right things and identifying what really matters – both to the company and to the customers. In this topic, students learn how to build this capability.Same as above3Engaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.Same as above4Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of	2	Creating Value	
 work efficiently or productively - but those who will make a valuable difference to the fortunes of the company. This difference may come from innovation, but it may also come from focusing on the right things and identifying what really matters – both to the company and to the customers. In this topic, students learn how to build this capability. Engaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply. 4 Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest"). 5 Human-centered thinking & Empathy In this topic, students earling with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer-centric design of products and solutions, at the heart of genuine customer-centric design of products and solutions, at the heart of genuine customer-centric design of products and solutions, at the heart of genuine customer-centric design o	_	5	
difference to the fortunes of the company. This difference may come from innovation, but it may also come from focusing on the right things and identifying what really matters – both to the company and to the customers. In this topic, students learn how to build this capability.Same as above3Engaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.Same as above4Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "tr			
from innovation, but it may also come from focusing on the right things and identifying what really matters – both to the company and to the customers. In this topic, students learn how to build this capability.3Engaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.Same as above4Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and wo			Same as above
 and identifying what really matters – both to the company and to the customers. In this topic, students learn how to build this capability. Engaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply. 4 Enlightend self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest"). 5 Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customeric entricity in services, and of any successful interaction with other people. 6 Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us,			
customers. In this topic, students learn how to build this capability.3Engaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.Same as above4Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing			
 3 Engaging deeply The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply. 4 Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest"). 5 Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of gueruine customer- centricity in services, and of any successful interaction with other people. 6 Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 			
The environment we live in is becoming increasingly complex because more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.Same as above4Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other			
more and more things are getting interconnected, new fields are emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive 	3		
emerging, technologies are rapidly changing, capabilities and knowledge one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.Same as above4Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above			
one is trained in will become fast obsolete. In such a scenario, the student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.Same as above 4 Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above 5 Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above			
student's ability to quickly understand and master what is going on, dive deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.4Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above			~ .
deep, get involved in any area, rapidly learn new capabilities that a job demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.4Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above			Same as above
demands, is important. Engaging deeply is a core way of thinking that can help them in this. In this topic, students learn how to engage deeply.4Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above			
 can help them in this. In this topic, students learn how to engage deeply. 4 Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest"). 5 Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer-centricity in services, and of any successful interaction with other people. 6 Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 			
 4 Enlightened self-interest & collaboration at work The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest"). 5 Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer-centricity in services, and of any successful interaction with other people. 6 Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 		demands, is important. Engaging deeply is a core way of thinking that	
The changing nature of work in organizations and in the global environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above		can help them in this. In this topic, students learn how to engage deeply.	
 environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest"). Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer-centricity in services, and of any successful interaction with other people. Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 	4	Enlightened self-interest & collaboration at work	
 environment is increasingly demanding that people work more collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest"). Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer-centricity in services, and of any successful interaction with other people. Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 		The changing nature of work in organizations and in the global	
collaboratively towards shared goals and more sustainable goals. A key to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").Same as above5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above			
to working successfully when multiple stakeholders are involved is "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest").5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above			Same as above
 "thinking in enlightened self-interest". In this topic, students learn how to develop this way of thinking (going beyond "narrow self-interest"). Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customercentricity in services, and of any successful interaction with other people. Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 			
to develop this way of thinking (going beyond "narrow self-interest").5Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.Same as above6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above			
 5 Human-centered thinking & Empathy In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people. 6 Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 			
 In this topic, students explore a human-centric approach to work – where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer-centricity in services, and of any successful interaction with other people. 6 Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 	5		
 where the ability to recognize and respond to other people (whether they are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer-centricity in services, and of any successful interaction with other people. Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 	5		
 are users or customers or team members) as a human being with human needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer-centricity in services, and of any successful interaction with other people. Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 			
 needs and difficulties, is essential. This is at the heart of user-centric design of products and solutions, at the heart of genuine customer-centricity in services, and of any successful interaction with other people. Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to 			~ .
design of products and solutions, at the heart of genuine customer- centricity in services, and of any successful interaction with other people.6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted 			Same as above
centricity in services, and of any successful interaction with other people.centricity in services, and of any successful interaction with other people.6Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above			
people.Trust Conduct6Trust ConductThe biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to			
6 Trust Conduct The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to			
The biggest currency in a sustainable career is "trust" i.e. being trusted by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to			
by team members, bosses, and customers. When we are trusted, people listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to	6		
listen to us, they are willing to give us the chance to grow, give us the space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how toSame as above			
space to make mistakes, and work seamlessly with each other without always having to "prove ourselves". In this topic, students learn how to			Como os shows
always having to "prove ourselves". In this topic, students learn how to			Same as above
		-	
demonstrate conduct that builds the trust of people.			
		demonstrate conduct that builds the trust of people.	
Showcase Lab Sessions 3 hrs	Showca	se Lab Sessions	3 hrs
Project work Beyond classroom	Project	work	Beyond classroom

Bachelor of Engineering Subject code: 3160002

	Distribution of Theory Marks									
R Level	U Level	A Level	N Level	E Level	C Level					
-	15	15	-	20	20					

Reference resources:

- A. Basic reference for both students and teachers
 - 1. Contributor Personality Program textbook cum workbook developed by Illumine
 - 2. Web-based ActivGuide[™] for self-exploration of rich media resources to vividly understand many of the ideas, watch role models, learn from industry people, get reference readings that help them enrich the understanding they gained in the class published by Illumine Foundation
- B. Advanced reference for teachers
 - 1. On Contributors, Srinivas V.; Illumine Ideas, 2011
 - 2. Enlightened Citizenship and Democracy; Swami Ranganathananda, Bharatiya Vidya Bhavan, 1989
 - 3. Eternal Values for a Changing Society Vol I-IV, Swami Ranganathananda; Bharatiya Vidya Bhavan
 - 4. Karma Yoga, Swami Vivekananda; Advaita Ashrama
 - 5. Vivekananda: His Call to the Nation, Swami Vivekananda; Advaita Ashrama
 - 6. Six Pillars of Self Esteem, Nathaniel Branden; Bantam, 1995
 - 7. Mindset: The New Psychology of Success, Carol S. Dweck; Random House Publishing Group, 2007
 - 8. Lasting Contribution: How to Think, Plan, and Act to Accomplish Meaningful Work, Tad Waddington; Agate Publishing, 2007
 - 9. Why not?: how to use everyday ingenuity to solve problems big and small, Barry Nalebuff, Ian Ayres; Harvard Business School Press, 2003
 - 10. The value mindset: returning to the first principles of capitalist enterprise (Ch 8 & 9); Erik Stern, Mike Hutchinson; John Wiley and Sons, 2004
 - 11. The Power of Full Engagement: Managing Energy, Not Time, is the Key to High Performance and Personal Renewal, Jim Loehr, Tony Schwartz; Simon and Schuster, 2003
 - 12. Creating Shared Value, Michael E. Porter and Mark R. Kramer; Harvard Business Review; Jan/Feb2011, Vol. 89 Issue 1/2
 - 13. The Speed of Trust: The One Thing That Changes Everything, Stephen M. R. Covey, Rebecca R. Merrill, Stephen R. Covey; Free Press, 2008
 - 14. The Courage to Meet the Demands of Reality, Henry Cloud; HarperCollins, 2009
 - 15. Responsibility at work: how leading professionals act (or don't act) responsibly, Howard Gardner; John Wiley & Sons, 2007

Bachelor of Engineering Subject code: 3160002

Course Outcomes:

Sr.	CO statement	Marks %
No.		weightage
Outcor	ne of theory sessions	•
CO-1	Students will be able to recognize & appreciate the thinking required to find	10-12%
	solutions in the face of any challenge.	
CO-2	Students will be able to recognize & appreciate different types of value that can be	10-12%
	created and the different ways to create value for others.	
CO-3	Students will be able to recognize & appreciate how to engage deeply, and its need,	10-12%
	value, payoffs and consequences in different contexts.	•
CO-4	Students will be able to differentiate between 'enlightened self-interest' and	10-12%
	'narrow self-interest' & appreciate the payoffs/ consequences of both when	
	working with multiple stakeholders.	
CO-5	Students will be able to recognize & appreciate the human side of situations or	10-12%
	interactions or projects that will help them develop a more human-centric	
	approach/ response to work.	
CO-6	Students will be able to recognize & appreciate conduct which builds trust of	10-12%
	people in contrast to conduct which breaks trust of people - in teams / organization	
	& the value of trust conduct in various situations.	
Outcor	ne of practical sessions	
CO-7	Students complete their 'Contributor Showcase Profile' on the Showcase Platform.	15%
	This includes (a) completing Illumine's Contributor Mindset Assessment (b)	
	building evidence to demonstrate their functional orientations as contributors.	
CO-8	Students learn to apply contributor thinking to think-through and address real-	15%
	world challenges.	
	Chouse -	

Bachelor of Engineering Subject code: 3160003 INTEGRATED PERSONALITY DEVELOPMENT COURSE

SEMESTER VI

TYPE OF COURSE –

• Value-based holistic personality development course for university students.

RATIONALE -

- This course aims to help a person understand and know his / her purpose in life, get a positive thought pattern, gain confidence, improve behaviour, learn better communication and develop a healthy physique with morality and ethics in its core.
- Todays youth lack the guidance to face insecurity about their health and career, premature relationships and family breakdown, addictions and substance abuse, negative impact of internet and social media etc. This course includes such topics that will cover all aspects and provide solution to the current challenges through creative and interactive activities.
- This course will allow students to enjoy, understand and practice invaluable lessons preparing them for a successful future.

Te	aching Sch	neme	Credits		Examination Marks			
L	Т	Р	С	Theor	Theory Marks Practical Marks			Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
2	0	0	2	70 🕌	30	30	20	150

COURSE CONTENT :

Lecture No.	Content	Hours
1	Facing Failures - Insignificance of Failures	2
2	Facing Failures - Power of Faith	2
3	Facing Failures - Practicing Faith	2
4	From House to Home - Bonding the Family	2
5	Learning from Legends - Leading without Leading (Pramukh Swami Maharaj)	2
6	Review Lecture – Words of Wisdom	2
7	My India My Pride - Glorius Past - Part 1	2
8	My India My Pride - Glorius Past - Part 2	2

Bachelor of Engineering Subject code: 3160003

9	My India My Pride - Present Scenario	2
10	Remaking Yourself - Begin with the End in Mind	2
11	My India My Pride - An Ideal Citizen - 1 (Accountability - Responsibility - Honesty - Integrity)	2
12	My India My Pride - An Ideal Citizen - 2 (Loyalty - Sincerity - Punctuality)	2
13	My India My Pride - An Ideal Cititzen - 3 (Ethical & Moral Values/Practices)	2
14	Financial Wisdom - Financial Planning Process	2
15	Review Lecture - Student Voice-2	2

BASIC STUDY MATERIAL / MAIN COURSE WORK-BOOK -

- 1. IPDC Workbook-I
- 2. IPDC Workbook-II

IPDC REFERENCES –

• These are the reference material for each lectures of IPDC.

Modul e No.	Module/ Course Topics	Lectures	References
1	Facing Failures	Factors Affecting Failures Failures are not Always Bad Insignificance of Failures Power of Faith Practicing Faith	 Thomas Edison's factory burns down, New York Times Archives, Page 1, 10/12/1914 Lincoln Financial Foundation, Abraham Lincoln's "Failures": Critiques, Forgotten Books, 2017 J.K. Rowling Harvard Commencement Speech Harvard University Commencement, 2008 Born Again on the Mountain: A Story of Losing Everything and Finding It Back, Arunima Sinha, Penguin, 2014 Failing Forward: Turning Mistakes Into Stepping Stones for Success, John C. Maxwell, Thomas Nelson, 2007 Steve Jobs: The Exclusive Biography Paperback, Walter Isaacson, Abacus, 2015

Bachelor of Engineering Subject code: 3160003

-			
2	Learning from Legends	Tendulkar & Tata Leading Without Leading	 Chase Your Dreams: My Autobiography, Sachin Tendulkar, Hachette India, 2017 Playing It My Way: My Autobiography, Sachin Tendulkar, Hodder & Stoughton, 2014 The Wit and Wisdom of Ratan Tata, Ratan Tata, Hay House, 2018 The Tata Group: From Torchbearers to Trailblazers, Shashank Shah, Penguin Portfolio, 2018 The Leader Who Had No Title, Robin Sharma, Jaico Publishing House, 2010 In the Joy of Others: A Life Sketch of Pramukh Swami Maharaj, Mohanlal Patel and BAPS Sadhus, Swaminarayan Aksharpith, 2013
3	Mass Management	Project Management	 Project Management Absolute Beginner's Guide, Gregory Horine, Que Publishing, 2017 The Fast Forward MBA in Project Management, Eric Verzuh, Wiley, 2011 Guide to Project Management: Getting it right and achieving lasting benefit, Paul Roberts, Wiley, 2013
4	My India My Pride	Glorious Past - Part 1 Glorious Past - Part 2 Present Scenario An Ideal Citizen - 1 An Ideal Citizen - 2 An Ideal Citizen - 3	 Hidden Horizons, Dr. David Frawley and Dr. Navaratna S. Rajaram, 2006 Rishis, Mystics and Heroes of India, Sadhu Mukundcharandas, Swaminarayan Aksharpith, 2011 Physics in Ancient India, Narayan Dongre, Shankar Nene, National Book Trust, 2016 <u>The Rise of Civilization in India and Pakistan,</u> Raymond Allchin, Bridget Allchin, <u>Cambridge University Press</u>, 1982 The Āryabhatīya of Āryabhata: An Ancient Indian Work on Mathematics and Astronomy (1930), Walter Eugene Clark, University of Chicago Press, reprint, Kessinger Publishing, 2006
5	Remaking Yourself	Restructuring Yourself Power of Habit Being Addiction-Free Begin with the End in Mind Handling the Devil – Social Media	 Power of Habit, Charles Duhigg, Random House Trade Paperbacks, 2014 Change Your Habit, Change Your Life, Tom Corley, North Loop Books, 2016 The Seven Habits of Highly Effective People, Stephen Covey, Simon & Schuster, 2013 Seven Habits of Highly Effective Teens, Sean Covey, Simon & Schuster, 2012 Atomic Habits, James Clear, Random House, 2018 How a handful of tech companies control billions of minds every day, Tristan Harris, TED Talk, 2017

Bachelor of Engineering Subject code: 3160003

6	Financial Wisdom	Basics of Financial Planning Financial Planning Process	 Rich Dad Poor Dad, Robert Kiyosaki, Plata Publishing, 2017 The Warren Buffett Way, Robert Hagstrom, Wiley, 2013 The Intelligent Investor, Benjamin Graham, Harper Business, 2006 Yogic Wealth: The Wealth That Gives Bliss, Gaurav Mashruwala, TV18 Broadcast Ltd, 2016
7	From House to Home	Affectionate Relationships Forgive & Forget Listening & Understanding Bonding the Family	 "What Makes a Good Life? Lessons from the Longest Study on Happiness", R. Waldinger, Ted Talks, 2015 Long Walk To Freedom, Nelson Mandela, Back Bay Books, 1995 Outliers, Malcolm Gladwell, Back Bay Books, 2011
8	Soft Skills	Teamwork & Harmony Networking - Decision Making - Leadership	 The 17 Indisputable Laws of Teamwork, John Maxwell, HarperCollins, 2013 Team of Teams: New Rules of Engagement for a Complex World, Stanley McChrystal, Portfolio, 2015 Predictably Irrational, Revised and Expanded Edition: The Hidden Forces That Shape Our Decisions, Harper Perennial, Dan Ariely, 2010
9	Review	Student Voice – 1 Student Voice – 2 Words of Wim	

COURSE OUTCOMES –

- To provide students with a holistic education focused on increasing their intelligence quotient, physical quotient, emotional quotient and spiritual quotient.
- To provide students with hard and soft skills, making them more marketable when entering the workforce.
- To educate students on their social responsibilities as citizens of India and have a greater sense of social responsibility.
- To provide students with a value-based education which will enable them to be successful in their family, professional, and social relationships by improving their moral and ethical values.
- To teach self-analysis and self-improvement exercises to enhance the potential of the participants.
- To have a broader sense of self-confidence and a defined identity.

Bachelor of Engineering Subject Code: 3160501 Semester –VI Subject Name: Mass Transfer Operations II

Type of course: Professional Core course

Prerequisite: Mass Transfer Operations- I

Rationale: The objective of this course is to apply principles of mass transfer operations for detail study and for solving problems pertaining to conventional unit operations such as distillation, humidification, adsorption, drying etc. for separation

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits		Examination Marks			
L	Т	Р	С	Theor	y Marks	Practical M	Iarks	Mark
				ESE (E) PA (M) ESE (V)			PA (I)	S
4	0	2	5	70	30	30	20	150
Content:								

Content:

Sr.	Content	Total
No.		Hrs
1	Distillation:	26
	Introduction, Vapor-liquid Equilibria, P-x-y T-x-y diagrams, concept of relative volatility and	
	effect of Pressure and Temperature on equilibrium data, Ideal solutions, Raoult's law as	
	applied to distillation operations, Deviation from ideality, steam distillation, Minimum and maximum boiling azeotropic mixtures, Enthalpy concentration diagrams, Flash distillation,	
	steam distillation, simple distillation, continuous rectification, Binary systems, Batch	
	fractionation etc., Determination of number of stages by Ponchon and Severit method and	
	McCabe-Thiele method, q line, Feed tray location, Concept of minimum, total and optimum	
	reflux ratio, Reboilers, Use of open steam, , Partial condensers, cold reflux, etc., Azeotropic	
	Distillation, Extractive Distillation, Vaccum distillation etc.	
	Multicomponent distillation : how components, minimum and total reflux, short out mathed:	
	Multicomponent distillation : key components, minimum and total reflux, short cut method: FUG (Fenskey-Underwood-Gilliland) method, Rigorous methods: Lewis-Matheson	
	calculations, Thiele and Geddes method, etc.	
2		11
	Humidification Operations:	
	VLE and Enthalpy for a pure substance, Saturated and unsaturated vapour-gas mixtures and	
	related terminologies such as absolute humidity, dry bulb temperature, dew point, wet bulb temperature, percentage & relative saturation, adiabatic saturation temperature, humid heat,	
	humid volume etc. Psychometric chart & Psychometric relations for air-water system,	
	adiabatic saturation curves, wet bulb temperature theory, Lewis relation, Adiabatic operations,	
	cooling towers.	
3	Adsorption and Ion exchange:	13
	Adsorption: Definitions and industrial applications, Types of adsorption, nature of	

Bachelor of Engineering Subject Code: 3160501

	Subject Code. 5100501	
	commonly used adsorbents, Adsorption Equilibria, Single gases and vapors, Adsorption	
	hysterises, Effect of temperature on adsorption, Heat of adsorption, Adsorption of solute	
	from dilute liquid solution, Adsorption from concentrated liquid solution, Material balance	
	and application of Freundlich's equation for single stage operation, multistage cross-current	
	operation and multistage countercurrent operation, Equipments for adsorption such as	
	fluidized bed & Teeter beds, steady state moving bed & unsteady state fixed -bed adsorbers,	
	concepts of adsorption wave, break-through curve, Pressure swing adsorber, elution and	
	chromatography etc.	
	Ion-Exchange : Principles, Techniques, Applications, Equilibria and Rate of ion exchange	
4	Drying:	10
	Equilibrium relationship & hysteresis, various types of moisture in drying, Batch drying, rate	
	of batch drying, time of drying, Cross-circulation drying, Through-circulation drying, concept	
	of N _{toG} and H _{toG} , Drying at low temperature, Freeze drying etc. Batch & continuous drying	
	equipments-Tray dryer, Tunnel dryer, Rotary dryers, Spray dryers, Fluidized bed dryer, etc.	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R	U	Α	Ν	E	С
Level	Level	Level	Level	Level	Level
10	25	25	10	-	-

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. R. E. Treybal, Mass transfer operations, 3rd edition, Mc-Graw Hill international, New Delhi, 1983.
- 2. J. F. Richardson, J H Harkar, Coulson and Richardson's Chemical Engineering, Volume2, 5th edition, Butterworth Heinemann, 2002.
- 3. Binay K. Dutta, Principles of mass transfer and separation processes, 2nd edition, Prentice Hall of India, 2007.
- 4. W. L. McCabe, J.C. Smith & Harriott, Unit Operations of Chemical Engineering, 7th edition Mc-Graw Hill international, India, 2014.
- 5. C. J. Geankoplis, Transport processes and unit operations, 3rd edition, Prentice Hall of India, 1993.

Course Outcomes: Students should be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Explain concepts and applications of distillation, humidification, adsorption and drying.	15
CO-2	Describe theories, derivations and equipments of distillation, humidification, adsorption and drying.	35
CO-3	Solve problems of frequently encountered separation systems using	35

Page 2 of 3

Bachelor of Engineering Subject Code: 3160501

		conventional mass transfer operations.	
Ī	CO-4	Compare among various mass transfer operations for desired separation.	15

List of Experiments:

- 1. To measure the vapor pressure of acetone and calculate its latent heat of vaporization.
- **2.** To study the humidification operation and calculate all psychometric parameters for air water system.
- 3. To study the characteristics of adsorption of moisture on Silica gel.
- 4. To study and verify the Freundlich's adsorption isotherm for aqueous oxalic acid charcoal system.
- 5. To verify Rayleigh's Equation for Differential Distillation.
- 6. To find out the critical moisture content of a given material using rate of drying curve.
- 7. To study the distillation with rectification in bubble cap distillation column
- 8. To verify the Equilibrium Relationship for n-Butanol-Water System.
- 9. To validate the basic principles of steam distillation.
- 10. To determine pressure drop data and values of K_G for various air and liquid velocities in a counter current cooling tower.

Major equipments:

Distillation column, Adsorption column, Cooling tower, dryer etc.

Open Source Software/learning website:

- 1. Students can refer to video lectures available on the websites including NPTEL.
- 2. Students can perform experiments on Virtual lab by IITs.
- 3. FOSSEE DWSIM https://dwsim.fossee.in/

Bachelor of Engineering Subject Code: 3160506 Semester - VI **Subject Name: Chemical Reaction Engineering 1**

Type of course: Professional core

Prerequisite:

Basic knowledge of material and energy balances in chemical engineering applications, laws of thermodynamics.

Rationale:

The course is intended to familiarize the students with concepts of reaction rate, derivation of rate expressions from reaction mechanism, ideal reactor types, integral method of analysis, differential method of analysis, principles of chemical reactor analysis and design, experimental determination of rate equations, design of batch and continuous reactors, how to choose the most appropriate reactor for a given feed, optimization of selectivity in multiple reactions, consideration of temperature and pressure effects, etc.

Teaching and Examination Scheme:

Tea	Teaching Scheme		Credits	Examination Marks			Examinatic		Total
L	Т	Р	С	Theory Marks		Practical	Marks	Marks	
				ESE (E)	PA (M)	ESE (V)	PA (I)		
3	0	2	4	70	30	30	20	150	
Content	:			9	3				

1-0

Content:

Sr. No.	Content	Total Hrs
1	Overview of chemical reaction engineering , Classification of reactions, Variables affecting rate, Definition of reaction rate, single and multiple reactions, Elementary and non-elementary reactions, molecularity and order of reaction, extent of reactions, conversion, Selectivity, Reaction rate fundamentals - elementary reaction sequences, steady state approximation and rate limiting step theory	7
2	Kinetics: Constant volume and variable volume batch, CSTR and PFR reactor data, data collection & plotting, linearization of rate equations. Analysis of total pressure data obtained from a constant-volume batch reactor, Integral and differential methods of analysis of data, Autocatalytic reactions, Reversible reactions, and Bio-chemical reactions.	8
3	Homogeneous Single Reactions: Performance equations for ideal batch, Plug flow, Back- mix flow and semi batch reactors for isothermal condition, Size comparison of single reactors, Multiple-reactor systems, Recycle reactor, Optimum recycle operations	8
4.	Multiple Reactions: Parallel reactions of different orders, Yield and selectivity, Product distribution and design for single and multiple-reactors, Series reactions: first-order reactions and zero-order reactions, Mixed series parallel complex reactions,	8

Page 1 of 4

Bachelor of Engineering Subject Code: 3160506

5.	Temperature Effects for Single and Multiple Reactions: Thermal stability of reactors	7
	and optimal temperature progression for first order reversible reactions, Adiabatic and heat	
	regulated reactions, Design of non-isothermal reactors, Effect of temperature on product	
	distribution for series and parallel reactions.	
6.	RTD theory and analysis of non-ideal reactors	7

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
14	26	23	7		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Octave Levenspiel, Chemical Reaction Engineering, 3rd Edition, Wiley-India Pvt. Ltd.
- 2. H. Scott Fogler, Elements of Chemical Reaction Engineering, 4th Edition, Prentice Hall of India Pvt. Ltd
- 3. Froment, G.B., and K.B. Bischoff, 1990, Chemical Reactor Analysis and Design, 2nd Ed., Wiley, New York
- 4. Smith, J.M., 1981, Chemical Engineering Kinetics, 3rd Ed., McGraw-Hill, New York.
- 5. L. D. Schmidt, the Engineering of Chemical Reactions, Oxford Press.
- 6. Carberry, J.J., 1976, Chemical and Catalytic Reaction Engineering, McGraw-Hill, New York.

Course Outcomes: At the end of the course, the students will be able to

G		
Sr.	CO statement	Marks % weightage
No.		
CO-1	To classify reactions based on reaction mechanisms and reaction rates	10
	and reactors based on flow patterns	
CO-2	To determine kinetics of single and multiple homogeneous reactions	20
CO-3	To choose an appropriate reactor type and operating conditions to	25
	achieve a desired output such as reactant conversion, selectivity and	
	yield.	
CO-4	To formulate a set of consistent material and energy balance equations to	25
	describe operation of batch, semi-continuous and continuous reactor	
	systems with single or multiple reactions	
CO-5	To summarize the effect of temperature and pressure on equilibrium	10
	conversion and choice of reactors.	

Bachelor of Engineering Subject Code: 3160506

List of Open Source Software/learning website:

Preparation of power-point slides, which include videos, animations, Pictures, graphics for better understanding theory – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus of Chemical Reaction engineering -1 is covered.

Suggested list of experiments to be performed (8 to 10 experiments are to be given)

The analysis will include various experiments with the objective of sample preparation, measurement of concentration, prediction of kinetics and modeling of kinetics data. Learning outcomes: Students will (a) Familiarize with suitable measurement techniques and devices to measure concentration and temperature (b) Learn to employ various methods to determine the kinetics of reactions. (c) Quantify the effect of non-ideality of flow in chemical reactors. (d) Calculate the effects of mass transfer on chemical reactions, (e) Predict errors in experimentation and compare experimental data with models

 To determine the activation energy of the reaction between sodium thio-sulp Arrhenius Equation. To determine order of reaction for the reaction between sodium thiosulphate a To measure the kinetics of a reaction between ethyl acetate and sodiu condition of excess ethyl acetate at room temperature. To determine the kinetics of the reaction between ethyl acetate and sodium temperature by the integral method of analysis. 	and HCl m hydroxide under n hydroxide at room
 2 To determine order of reaction for the reaction between sodium thiosulphate a 3 To measure the kinetics of a reaction between ethyl acetate and sodiu condition of excess ethyl acetate at room temperature. 4 To determine the kinetics of the reaction between ethyl acetate and sodium temperature by the integral method of analysis. 	m hydroxide under
 To measure the kinetics of a reaction between ethyl acetate and sodiu condition of excess ethyl acetate at room temperature. To determine the kinetics of the reaction between ethyl acetate and sodium temperature by the integral method of analysis. 	m hydroxide under
 condition of excess ethyl acetate at room temperature. To determine the kinetics of the reaction between ethyl acetate and sodium temperature by the integral method of analysis. 	n hydroxide at room
4 To determine the kinetics of the reaction between ethyl acetate and sodium temperature by the integral method of analysis.	-
temperature by the integral method of analysis.	-
	en ethyl acetate and
	en ethyl acetate and
5 To determine the activation energy and frequency factor for reaction betwe	
sodium hydroxide at room temperature & at different temperature.	
6 To determine the kinetics of the reaction between ethyl acetate and sodium	1 hydroxide at room
temperature by the differential method of analysis.	
7 To determine the kinetics of the reaction between n- butyl acetate and sodiur	n hydroxide at room
temperature by the integral method of analysis.	
8 To determine the kinetics of the reaction between n- butyl acetate and sodiur	n hydroxide at room
temperature by the differential method of analysis	
9 To study and analyze Residence Time Distribution (RTD) of a straight	tubular flow reactor
without helical coils and as a helical coil	
10 To study and analyze Residence Time Distribution (RTD) for single tank r	eactor, two tanks in
series and three tanks in series.	
11 To analyze Residence Time Distribution (RTD) of packed bed reactor and pr	rediction of extent of
dispersion.	
12 To study and analyze Kinetics of Dye degradation using Microwaves.	

Bachelor of Engineering Subject Code: 3160506

13	To study and interpret Kinetics of Bio-diesel synthesis from vegetable oils by Transesterification
14	To study Multiphase reaction: Effect in mass transfer limited reaction.
15	To study Oscillating reactions, pattern formation and reduced order modeling
16	To conduct Kinetic study of any biochemical reaction

List of Open Source Software/learning website: Software:

Students can refer to video lectures available on the websites including NPTEL, Students can refer to the CDs which are available with some reference books for the solution of problems using software. Students can develop their own programs for the solutions of problems.

Open Source Software/learning website:

- 1. Students can refer to video lectures available on the websites including NPTEL.
- 2. Students can perform experiments on Virtual lab by IIT Bombay.
- 3. FOSSEE DWSIM https://dwsim.fossee.in/

Bachelor of Engineering Subject Code: 3160507 Semester – VI Subject Name: Advanced Separation Processes

Type of course: Professional Elective

Prerequisite: Basic Concepts of unit operations including mass transfer.

Rationale:

The course is intended to familiarize the students of chemical engineering with the new, emerging and nontraditional separation techniques and their potential applications in chemical and allied process industries. The course will provide exposure to membrane based techniques, chromatographic separation, super critical fluid extraction and various other technologies.

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits		Examination Marks			
L	Т	Р	С	Theor	Theory Marks Practical Marks			Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

C- N-	Cartanta	T-4-1					
Sr. No.	Contents	Total					
		Hrs					
1	Fundamentals of separation processes, separation factor, chemical potential in interface mass transfer, equilibrium and rate governed separation, drawbacks of the conventional separation processes, need for advanced separation processes. Major areas of applications of advanced separation processes.						
2	Membrane Separation Processes: Membrane types, materials, synthesis and characterization; Different membrane modules; Working principle, operating parameters, membranes used, transport processes/mechanisms and industrial applications for individual membrane processes such as (i) Reverse osmosis, (ii) nanofiltration, (iii) ultrafiltration, (iv) microfiltration (v) dialysis	8					
3	Membrane gas separations, Fundamental mechanism, governing factors, principle of designing of gas separator membrane using complete mixing model. Gas separation membranes, applications of membrane gas separation. Introduction to pervaporation: principle, membranes used and application. Hybrid distillation-pervaporation system, Membrane Reactor: Concept & working, Various types of membrane used for membrane reactor, Membrane bioreactor.	8					
4	Reactive and catalytic distillation Concept, advantage & disadvantages, BALE & KATMAX packing Manufacturing of MTBE and ETBE and its comparison with conventional techniques, Concept & working of short path Distillation Unit (SPDU),	6					

Page 1 of 4

Bachelor of Engineering Subject Code: 3160507

5	Supercritical extraction: Working Principal, unique properties and solubility behavior of	6				
	supercritical fluids, Advantages of supercritical extraction, Decaffeination, ROSE process					
	for purification of crude oil, hydrothermal oxidation, and Commercial applications of					
	supercritical extraction.					
6	Chromatographic separation: Principle and operation, Chromatographic column Ion	6				
	exchange chromatography, Gel filtration and affinity chromatography; Thin layer and					
	paper chromatography Liquid chromatography, Advantages and disadvantages of					
	chromatographic separations.					
7	Electrophoretic separations: Principle of electrophoresis, Factors affecting electrophoresis,	6				
	Gel membrane and paper electrophoresis, applications of electrophoresis.					

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
14	26	23	7				

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Transport Processes and Separation Process principles, Christie J Geankoplis Prentice-Hall of India Private Ltd, New Delhi, 4th Edition 2006.
- 2. Membrane Separation Processes, Second Edition, by Kaushik Nath, PHI Learning Pvt. Ltd, New Delhi,2017
- 3. Munir Cheryan, UF Applications Handbook, Technique Publishing Co, Lancaster, USA (1986).
- 4. Separation Process Engineering, Philip C. Wankat, Prentice-Hall, 4th Edition, 2016.
- 5. Introduction to process Engineering & Design" by S.B. Thakore & B.I Bhatt, Tata McGraw-Hill Ltd., 2007
- 6. Separation Process Principles, J.D. Seader and E.J.Henley, Wiley, 2nd Edition 2004
- 7. Perry Chemical Engineers Handbook' 7thEdition by R.H Perry and D. Green.
- 8. Ullman's Encyclopedia of Industrial Chemistry, 7th edition, Wiley-VCH
- 9. Natural Extracts using supercritical carbon dioxide, M. Mukhopadhyay, CRC Press

Course Outcomes: At the end of the course, the students will be able to

Bachelor of Engineering Subject Code: 3160507

Sr.	CO statement	Marks % weightage
No.		
CO-1	Ability to identify an appropriate separation technique for intended problem	20
CO-2	Understand the principle of membrane separation for various aqueous systems	35
CO-3	To conceptualize the reactive and catalytic distillation	20
CO-4	Ability to recognize the selection criteria between advanced separation techniques and conventional separation techniques.	25

List of Open Source Software/learning website:

Preparation of power-point slides, which include videos, animations, Pictures, graphics for better understanding theory – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus of Advanced separation processes is covered.

Suggested list of experiments to be performed (8 to 10 experiments are to be given)

- 1. Determination of the water permeability of a given polymeric membrane.
- 2. Determination of permeation flux of a membrane in flat-sheet module (Dye-water solution may be used as feed). (RO/NF/UF membranes can be used)
- 3. The experiment (2) can be performed with various other modules such as spiral wound or hollow fiber.
- 4. Study of the effect of trans membrane pressure on permeatetion flux of a given membrane in a given module.
- 5. To determine rejection coefficient of the given membrane for a particular feed waste-water. (RO/NF/UF membranes can be used)
- 6. Determination of the swelling/sorption characteristics of a given polymeric membrane in a given pure solvent and its mixture of different concentrations.
- 7. Determination of permeate flux and separation factor for the separation of a given organic-aqueous mixture using pervaporation module.
- 8. Determination of membrane permeability, selectivity and diffusivity for the separation of a given organic-aqueous mixture using pervaporation.
- 9. To separate a mixture of dyes using thin layer chromatography

Bachelor of Engineering Subject Code: 3160507

- 10. Separation of metallic ions by paper chromatography
- 11. Separation of plant pigments (chlorophylls and carotenoids) from green leaves by column chromatography.
- 12. Determination of ion exchange capacity of a given cation or anion exchanger
- 13. Numerical/design assignment of various membrane processes e.g. Reverse Osmosis, Ultra Filtration, Pervaporation etc.
- 14. Numerical/design assignment based on reactive and catalytic distillation.

In the beginning of the academic term, students may be allotted at least one Open-ended Project / Study Report /Latest outcome in technology. Literature survey including patents and research papers of fundamental process - Design based small project or - Study report based on latest scientific development or - Technology study report/modeling/ simulation/collection report or - Computer based simulation/web based application/analysis presentations of basic concept field which may help them in chemical engineering. These can be done in a group containing maximum three students in each. 4.

List of Open Source Software/learning website: Software:

s ours

Students can refer to video lectures available on various websites including NPTEL. \neg Students can refer to the CDs which are available with some reference books for the solutions of problems using softwares. Students can develop their own programs for the solutions using excel, Chemical and other simulation softwares.

Bachelor of Engineering Subject Code: 3160510 Semester – VI Subject Name: Petroleum Refining and Petrochemicals

Type of course: Professional Elective Course

Prerequisite: Basics of Chemical Technologies

Rationale: Petroleum refining as well as petrochemical industries constitute a major part of chemical sector. Every chemical engineer has to invariably handle the enormous consumption of petroleum products, their diversity and increasing applications. Chemical engineer has to apply the relevant concepts for operating petroleum refinery or petrochemical plant in a safe manner. Beside this, a chemical engineer must be aware about the various properties of petroleum fractions as well as petrochemicals. Hence, this course has been designed to develop such expertise and skills.

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits	s Examination Marks				
L	Т	Р	С	Theory N	Theory Marks Carefornia Practical Marks			Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content	Total Hrs
	PETROLEUM REFINING	
1	Basics of Petroleum: Role of Crude Oil in Global Economy, Present Scenario of Crude Oil Refinery, Origin(Formation), Composition, Classification and Evaluation of Crude Oil, Crude Assay Analysis, Distillation Characteristics such as TBP,ASTM & EFV etc.	04
2	 Properties of Petroleum Products: Types of Gases and their Composition, Types of Gasoline & it's Important Properties and Tests such as ASTM Distillation , RVP, Octane number , Oxidation stability , Sulphur Content etc., Various types of Naphtha and their Important Properties and Application, Important tests and Properties of Kerosene such as Flash & Fire Point , Smoke Point , Aniline Point etc., Types of Diesel & its Important Properties and Tests such as Pour Point, Diesel Index , Cetane Number etc. , Heavy Fractions Like Lube Oil, Bitumen ,Asphalt etc. and their Important Properties Such as Viscosity Index, Carbon Residue, Penetration Index, Softening Point etc. 	06
3	Processing of Petroleum: Pretreatment of Crude (Dehydration & Desalting), Pumping of Waxy Crude , Heating of Crude , Distillation of Petroleum & Types of Reflux , ADU & VDU etc	05

Page 1 of 4

Bachelor of Engineering Subject Code: 3160510

-	Subject Code: 5100510				
	Treatment Techniques:	06			
4	Physical Impurities Found in Crude & their Removal, Sweetening Techniques, Production				
	and Treatment of LPG, Gasoline Treatment Such as Lead Doctoring, Merox Sweetening,				
	Catalytic Desulphurization etc. Various Methods of Treatment of Lubes Such as Phenol				
	Extraction, Furfural Extraction, etc.				
5	Thermal & Catalytic Cracking :	09			
	Necessity and types of cracking				
	Thermal cracking: Mechanism of Thermal Cracking, Properties of Cracked Materials,				
	Visbreaking, Dubb's Two Coil Process, Delayed Coking, Naphtha Cracking etc.				
	Catalytic cracking: Advantages & Theory of Catalytic Cracking, Fixed Bed, Moving Bed				
	& Fluidized Bed Technology, FCC, Hydrocracking, Catalytic Reforming, Platforming,				
	Continuous Catalyst Regeneration Reforming, Catalytic Polymerization, Catalytic				
	Alkylation, Catalytic Isomerization etc.				
PETROCHEMICALS					
	Properties, Uses, Manufacturing Processes, Flow-Sheets etc. of following Petrochemicals				
	C1 and C2 Petrochemicals:				
6	Methanol, Formaldehyde, Chlorome thane etc.	05			
	Ethylene, Ethylene Dichloride, Vinyl Chloride, Ethylene Oxide, Ethylene Glycol, Ethanol				
	amines etc.				
	C3, C4, Aromatics and Polymers:	10			
7	Propylene, Butadiene, etc.				
	BTX Separation, p-xylene, Styrene, p-terephthalic acid, etc.				
1	PVC, LDPE, LLDPE, HDPE, Polypropylene, Polypropylene Co-polymers, Polystyrene,				
1	SBR ,PBR, Polyesters etc.				
L					

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R level	U Level	A Level	N Level	E Level	C Level	
14	28	14	14	0	0	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference books:

- 1. B. K.Bhaskar Rao, Modern Petroleum Refining Processes, Oxford and IBH 2007.
- 2. M Gopal Rao, Dryden's Outlines of chemical technology, 3rd Edition East-West press pvt. Ltd, Delhi
- 3. B.K.Bhaskar Rao, A Text on Petrochemicals, 2ndEdition, Khanna Publishers, Delhi, 1998

Page 2 of 4

Bachelor of Engineering Subject Code: 3160510

- **4.** George Austin, Shreve's Chemical Process Industries, 5thedition McGraw Hill publication –New Delhi.
- 5. W.L.Nelson, Petroleum Refinery Engineering, McGraw Hill, New York, 1958.
- 6. James H, Gary & Glenn E. Handwerk, 'Petroleum Refining, Technology & Economics', 4th Edition, Marcel Dekker, Inc, 2001.
- 7. Speight, J. G., The Chemistry and technology of Petroleum, 5th Edition, M. Dekker, 1991.
- 8. Watkins, R. N., Petroleum Refinery Distillation, 2nd Edition Gulf Pub. Co., Houston, Tex, 1979.

Course Outcomes:

Students should be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Define various test properties of crude oil and petroleum products and also explain their physical significance.	20
CO-2	Explain crude oil processing, treatment techniques and cracking reactions taking place in a petroleum refinery.	40
CO-3	Apply acquired knowledge of refinery processing and manufacturing technologies of producing petrochemicals for problem solving.	20
CO-4	Compare various routes of production of widely used petrochemicals.	20

List of Experiments:

1.	To determine the carbon residue of given sample by rams bottom apparatus.
2.	To determine the carbon residue of given sample by Conradson apparatus.
3.	To determine the calorific value of given sample by bomb calorimeter.
4.	To determine the viscosity of given sample using Engler viscometer at different temperatures.
5.	To determine the viscosity of given sample using say bolt viscometer at different temperatures.
6.	To determine the flash & Fire point of given oil sample using Cleveland open cup apparatus.
7.	To determine the smoke point of given kerosene (with and without acid treatment) sample
	using smoke point apparatus.
8.	To determine the percentage of corrosive sulfur in a given petroleum product using constant
	temperature bath.
9.	To characterize the given petroleum product (Diesel, petrol etc.) by A.S.T.M distillation (To
	plot ASTM curve)
10.	To find out the flash point of given oil sample using Able's apparatus
11.	To determine the flash and fire point of given sample of oil using Pensky-Martin apparatus.
12.	To determine the softening point and penetration index of Bitumen
13.	To determine the cloud and pour point of a given oil sample
14.	To determine the aniline point of a given sample.

Major Equipments:

- **1.** Penskey Martin apparatus
- 2. Cleaveland Flash and Fire Point Apparatus:

Bachelor of Engineering Subject Code: 3160510

- 3. Softening point Apparatus
- **4.** Ram's bottom Apparatus
- 5. Conradson carbon residue Apparatus
- 6. Cloud and pour point Apparatus
- 7. ASTM Distillation Apparatus
- 8. Red wood viscometer:
- 9. Saybolt Viscometer
- **10.** Engler Viscometer
- **11.** Constant Temperature bath
- 12. Bomb calorimeter
- **13.** Able's apparatus

Open Source Software/learning website:

- Video lectures available on the websites including NPTEL lecture series
- > Open access Literature available for Petroleum Refining
- MIT Open course lecture on Petroleum Refining

Bachelor of Engineering Subject Code: 3160511 Semester – VI Subject Name: Polymer Science & Technology

Type of course: Professional elective course

Prerequisite: Basic knowledge of Chemistry.

Rationale: The main theme of the course on Polymer Science and Technology is to focus understanding of polymer science and technology, Polymer synthesis and its characterization. Knowledge of properties of polymers will enable their proper selection for applications in domestic as well as industrial appliances.

Teaching and Examination Scheme:

Tea	Teaching Scheme Credit			Examination Marks				Total		
L	Т	Р	С	Theory Marks		Practical Marks		Marks		
				ESE (E)	PA (M)	ESE (V)	PA (I)			
3	0	2	4	70	30	30	20	150		
Content:	•			S.						

Content:

Sr. No.	Content	Total Hrs
1	Introduction: Basic concepts of Monomer, Types of Monomer, Functionality of Monomer, Basic concepts of Polymer, Effect of functionality on Polymer Structure, Chemical and geometric structure of polymer, Configuration and conformation, Linear, branched and cross-linked structure, Random, alternating, block and graft polymers, Stereo regular polymer, Classification of Polymer	6
2	Basic concept of polymer: structures, configuration, application, tacticity crystalline, mechanism and kinetics of polymerization, mode of formation, Poly dispersity and molecular weight distribution, Concept of Mn(Number average molecular weight), Mw((Weight average molecular weight), Mv(Viscosity average molecular weight) and Mz(Z average molecular weight) and measurement techniques, effect of molecular weight on polymer end use properities Functionality principle, Theory of polymer solutions: solubility parameter, Mark-Houwink- Sakurda equation.	8
3	Polymerization reactions: 1. Addition Polymerization reactions: a. Free radical polymerization b.Ionic polymerization c.Co-ordination polymerization 2.Condensation Polymerization a.Poly condensation polymerization b.Poly addition polymerization 3.Rearrangements and Stereo Polymerization 4.Co-Polymerization	10
4	Techniques of Polymerization: Bulk polymerization, Solution polymerization, Suspension polymerization, Emulsion polymerization, Comparison of bulk, solution, emulsion and suspension polymerization techniques	7

Bachelor of Engineering Subject Code: 3160511

5	Polymer Degradation :	6
	Polymer degradation (chain and random), Methods of degradation of polymers such as	
	mechanical, thermal, photo, oxidative and bio degradation	
6	Polymer processing:	9
	Unit operations in polymer industries.	
	Compression molding, transfer molding, injection molding, blow molding, reaction injection	
	molding, extrusion, pultrusion, calendaring, rotational molding, thermoforming, rubber	
	processing in two-roll mill, internal mixer.	

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
15	20	15	10	10	0			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Polymer science and technology, Joel R. Fried, Prentice Hall India Pvt. Ltd.
- 2. Textbook of Polymer Science, Fred W. Billmeyer, John Willy and Sons.

ø

- 3. Rubber chemistry, Brydson, Elsevier Appl.
- 4. Principles of polymer system, Ferdinend &Rodrigues, Tata McGraw-Hill Pub.
- 5. Polymer Science, Gowariker, Eastern Wiley Pub.

Sr. No.	CO statement	Marks % weightage
CO-1	To Synthesize and characterize polymers based on their properties and applications.	20
CO-2	To know the various types of polymerization reactions.	20
CO-3	To Discuss techniques of polymerization.	25
CO-4	To be able to utilize the knowledge for the processing of polymers.	20
CO-5	To build a bridge between theoretical and practical concept used in industry.	15

List of Experiments: (Minimum 05 experiments need to be performed)

Bachelor of Engineering Subject Code: 3160511

- 1. Bulk polymerization of styrene.
- 2. Solution polymerization of acrylonitrile.
- 3. Emulsion polymerization of methylacrylate.
- 4. Synthesis of urea formaldehyde by condensation polymerization.
- 5. To study injection moulding machine: Different materials and moulds; and optimization of cycle Time.
- 6. Determination of melt flow index for different materials.
- 7. Extrusion of strands / film and Pelletization.
- 8. To study Compression moulding.
- 9. To synthesis polymer using Bulk, solution, suspension & amp; emulsion polymerization method.

Major Equipment

Extruder, compression molding machine, etc.

List of Open Source Software/learning website:

Reference to NPTEL lectures can be made for a better understanding

Literature available on Polymer technology.

Bachelor of Engineering Subject Code: 3160512 Semester – VI Subject Name: Biochemical Engineering

Type of course: Professional elective

Prerequisite: Basic Concepts of chemistry and unit operations.

Rationale: This course is intended to familiarize the students of chemical engineering with the key aspects associated with biochemical processes. Students will be exposed to the concepts which constitute biochemical engineering including its scope, applications and advantages over conventional processes. Students will also learn the principles and practice of cell culture including sterilization techniques, bioreactor design, and some of the common unit processes of the downstream processing of biological products.

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits	Examination Marks				Total
L	Т	Р	С	Theor	Theory Marks 🛛 🚺 Practical Marks			Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content	Total Hrs					
		~					
1	Biochemical engineering as an interdisciplinary course, comparison of chemical and	6					
	biochemical processes, Integrated bioprocess systems, Unit Operations in Bioprocess,						
	microbiology fundamentals, Prokaryotic and Eukaryotic cells and their comparison;						
	important features.						
2	Chemicals of life: carbohydrates- types and functions, proteins- functions, elemental	7					
	composition and types of proteins, basic idea about primary, secondary and tertiary						
	structure of proteins, protein denaturation. Lipids- classifications and functions.						
3	Properties of enzymatic reactions, Various models for enzyme-substrate complex	7					
	formation, factors affecting enzyme activity, Michaelis-Menten equation: derivation and						
	graphical evaluation of kinetic parameters, Enzyme inhibition, Enzyme immobilization,						
	different methods of immobilization, Industrial enzymes and their applications.						
4	Sterilization and media preparation, different types of solid media, cell death kinetics, Air	7					
	sterilization, steam sterilization, batch and continuous sterilization.						
	Stoichiometry of microbial growth and product formation, elemental balances, degree of						
	reduction, yield coefficient, respiratory quotients. Oxygen uptake rate, Biomass production						
	in cell cultures, phases of microbial growth, measurement of microbial growth by various						
	methods, Monod growth kinetics, Evaluation of kinetic parameters, substrate and product						

Page 1 of 3

Bachelor of Engineering Subject Code: 3160512

	inhibition, maintenance energy, environmental factors affecting microbial growth.	
5	Growth of organisms in batch reactor, continuous culture of organism, comparison	6
	between batch and continuous biomass culture, Stirred tank reactor in series and stirred	
	tank reactor with recycle of biomass. Fed batch reactor, plug flow reactor.	
6.	Design of Fermentor, Basic Functions, Body construction, Maintenance of aseptic	6
	conditions, Control of parameters, Valves and steam traps, Variants of fermentation	
	vessels, Oxygen requirement in fermentations, Aeration and Agitation, Determination of	
	K _L a values, Fluid rheology, Factors affecting K _L a values	
7.	Product recovery operations, applications of filtration, cell disruption, centrifugation,	6
	liquid-liquid extraction, micro and ultrafiltration, chromatography, electrophoresis,	
	isoelectric focusing in downstream processing.	

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
14	26	23	07					

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Bioprocess Engineering: Basic concepts, 2nd Edition, by Michael L Shuler & Fikret Kargi, PHI, New Delhi.
- 2. Introduction to Biochemical Engineering by D. G. Rao, Tata McGraw-Hill Education, 2005.
- 3. Biochemical Engineering Fundamentals by James Bailey & David F Oillis, Second Edition, McGraw Hill Publications.
- 4. Principles of Fermentation Technology, by Whitaker, Peter F Stanbury, S. Hall and A. Whitaker, Publisher: Butterworth-Heinemann; 2nd edition
- 5. Biochemical Engineering, Harvey W Blanch and Douglas S Clark, CRC Press

Course Outcomes: At the end of the course, the students will be able to

Sr.	CO statement	Marks % weightage
No.		
CO-1	To understand basic features of a biochemical reaction and its stoichiometry	15

Page 2 of 3

Bachelor of Engineering Subject Code: 3160512

CO-2	To develop an elementary idea of the basic features of common	20
	microorganisms and their growth and functions of selected biochemical.	
CO-3	To identify and explain the basic design features of bioreactors	25
CO-4	To understand the principles of the various downstream processing of	20
	bio-products	
CO-5	To understand the basics of enzyme kinetics and features of enzymes	20
	with few applications	
1		

List of Open Source Software/learning website:

Preparation of power-point slides, which include videos, animations, Pictures, graphics for better understanding theory – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus of Biochemical engineering is covered.

Suggested list of experiments to be performed (8 to 10 experiments are to be given)

- 1. Preparation of aqueous culture medium for microbial growth and steam sterilization of the medium in autoclave.
- 2. Preparation of solid medium (on agar): Slant, stab, petridish and inoculation of microbial culture in laminar hood cabinet.
- 3. Analytical Estimation of Glucose from aqueous solution by DNS method using spectrophotometer.
- 4. Estimation of total sugar, reducing and non-reducing sugar from jaggery sample by Cole's Method.
- 5. Estimation of Protein by Folin-Lowry method
- 6. To study the Growth kinetic of any microorganism by using Monod Equation
- 7. Determination of dissolved oxygen concentration from a sample of water.
- 8. Determination of oxygen transfer rate and K₁a value
- 9. Determination of iodine value of the given sample of vegetable oil.
- 10. Determination of free CO_2 in a given sample of tap-water.
- 11. Determination of BOD-5 for a given sample of waste water
- 12. To perform column chromatography
- 13. To perform drying operation on any biomass/biological materials and construct the drying rate plot.

List of Open Source Software/learning website: Software:

Students can refer to video lectures available on the websites including NPTEL, Students can refer to the CDs which are available with some reference books for the solution of problems using software.

Students can develop their own programs for the solutions of problems.

Bachelor of Engineering Subject Code: 3160513 Semester – VI Subject Name: Wastewater Engineering

Type of course: Open elective course

Prerequisite: None

Rationale:

To provide an idea on the challenges in the field of water management with a perspective on wastewater management. Students will learn about the problems and its solution perspective on waste water treatment methods, sewage and sludge disposal. Different types of primary, secondary and advances treatment methods should be known by the student. This subject will guide students in the same direction. The objectives of this course are to help the students develop the ability to apply the basic understanding of physical, chemical and biological phenomena for successful design, operation and maintenance of sewage treatment plants.

Teaching and Examination Scheme:

Tea	aching Sch	neme	Credits		Examination Marks			
L	Т	Р	C	Theor	Theory Marks 🛛 🚺 Practical Marks			Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	0	3	70	30	0	0	100

Content:

Cor	ntent:		
Sr. No.	Content	Total Hrs	% weightage
1	Characterization and treatment of wastewater Introduction: Wastewater flow and its characteristics, Wastewater collection systems, Estimation and variation of wastewater flows. Problems of industrial wastewaters, sampling protocol, equalization, neutralization, proportioning processes, volume and strength reduction. Preliminary, primary, secondary and tertiary wastewater treatment processes. Theory and design of screens, grit chambers, sedimentation, coagulation, flocculation	07	15
2	Activated sludge treatment for wastewater Physico-chemical and biological treatment strategies and their evaluation, Theory of activated sludge process (ASP), extended aeration systems, trickling filters (TF), aerated lagoons, stabilization ponds, oxidation ditches, sequential batch reactor, rotating biological contactor, etc., Mass balancing in ASP and TF and their design.	10	25
3	Anaerobic treatment of wastewater Anaerobic treatment process, Effects of pH, temperature and other parameters on anaerobic treatment, Concept of anaerobic contact process, anaerobic filter, anaerobic fixed film reactor, fluidized bed and expanded bed reactors and up flow anaerobic sludge blanket (UASB) reactor.	08	15

Bachelor of Engineering Subject Code: 3160513

4	Planning for wastewater treatment and its reclamation Indian standards for disposal of treated wastewaters on land and in natural streams, Agricultural irrigation, Ground water recharge, Treated wastewater reclamation and reuse, Introduction to duckweed pond, vermiculture and root zone technology for wastewater treatment, Special treatments, Recent technologies of treatment.	10	20
5	Industrial wastewater treatment Study on wastewater generation points, wastewater characteristics, process flow sheets, wastewater treatment scheme for sugar, textile, steel, paper/ pulp, oil refinery, pharmaceutical, dyes and intermediates industries.	10	25

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
30	15	15	5	5	0

Legends: R: Remembrance; U: Understanding; A: Application; N: Analyze; E: Evaluate; C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference:

Text Books

- 1. Economics of Water Resources Planning, James L.D. and Lee R.R., McGraw-Hill, Newyork, 1971.
- 2. Water Resources Handbook, Mays L.W., McGraw-Hill 1996.
- 3. Design of Water-Resource Systems, Maass A., Hufschmidt M.M., Dorfman R., Jr. Thomas H.A., Marglin, S.A., Fair G.M., Harvard University Press, 1962.
- 4. Environmental Engineering (Vol. I) Water Supply Engineering, Garg S.K., Khanna Publishers, 1977.
- 5. Water Supply and Wastewater Engineering, Raju B.S.N., Tata McGraw-Hill, New Delhi, 1995.
- 6. Water Supply and Sanitary Engineering, Birdie G.S. and Birdie J.S. Dhanpat Rai Publishing Company Private Ltd. New Delhi, 2014.
- 7. Wastewater Engineering: Treatment Disposal Reuse, Metcalf & Eddy, McGraw-Hill, 1979
- 8. Water & Wastewater Engineering Volume II, Fair G.M., Geyer J.C., Okun D.A., John Wiley& Sons Ltd. Newyork, 1968.

Other References:

- 1. Water Resources Systems Planning and Management, Chaturvedi M.C., Tata McGraw-Hill, India, 1992.
- 2. Introduction to Hydrology, Viessman W., Thomas Y. Crowell, Harper and Row, NY, 1972.

Bachelor of Engineering Subject Code: 3160513

- 3. Handbook of Applied Hydrology, Chow V.T., McGraw Hill Book Company, New York, 1964.
- 4. Engineering Hydrology, Subramanya K., Tata McGraw Hill Company Ltd., New Delhi, 1994.
- 5. Hydrology and Water Resources Engineering, Patra. K.C., Narosa Publising House, New Delhi, 2008.

List of Open Source Software/learning website: <u>www.nptel.iitm.ac.in/courses/</u>

Course Outcomes:

100

Sr. No.	CO statement	Marks % weightage
CO-1	To understand the basic knowledge about the wastewater and its treatment processes	15
CO-2	To understand the activated sludge process for the treatment of wastewater	20
CO-3	To understand the anaerobic process for the treatment of wastewater	15
CO4	To understand the standards for wastewater treatment, disposal and its reclamation	15
CO-5	To study the wastewater treatment scheme for various industries	20

List of Tutorials: Students can select any type of wastewater treatment. Each group of students are expected to create a way to utilize wastewater treatment method and sludge disposal process in innovative way and prepare report of project assigned to his/her group. In addition, each group is expected to give a power point presentation during the semester. The presenter will be selected randomly just prior to the presentation.

List of Open Source Software/learning website: Students can refer to video lectures available on various websites including NPTEL. Students can refer to the CDs which are available with some reference books for the solutions of problems using softwares. Students can develop their own programs for the solutions using excel, ChemCAD and other simulation softwares.

Bachelor of Engineering Subject Code: 3160514 Semester – VI Subject Name: Green Technology and Sustainable Development

Type of course: Open elective course

Prerequisite: None

Rationale:

To provide an idea on Green Technology with an approach towards the design, manufacturing and use of chemical products to reduce or eliminate the chemical hazards intentionally. Green Technology is a new and rapidly emerging branch of chemistry. The goal of Green Technology is to create better and safe chemicals while choosing the safest and the most efficient ways to synthesize them. The main goal of Green Technology is to eliminate hazards right at the design stage. The principles of Green Technology demonstrate how chemical production could be achieved without posing hazard to human health and environment.

Students will learn the concept of sustainable development including different perspectives, consequences of societal resource use and strategies for changing this concept towards a sustainable direction.

Teaching and Examination Scheme:

	Tea	ching Sch	neme	Credits		Examination Marks			
ĺ	L	Т	Р	С	Theor	y Marks	Practical N	/larks	Marks
					ESE (E)	PA (M)	ESE (V)	PA (I)	
	3	0	0	3	70	30	0	0	100

Content:

Sr. No.	Content	Total Hrs	%weight age
1	Principles of Green Technology and Green Engineering: To learn to modify the processes and products to make them green safe and economically acceptable to the society, Concepts of green chemistry and Process intensification.	07	15
2	Green Synthesis and Catalysis: Green oxidation and photochemical reactions, Microwave and Ultrasound assisted reactions, Synthesis of Green Reagents, Green solvents, Green nanotechnology and Ionic liquids.	07	20
3	Green Industrial Processes: Pollution statistics from various industries like polymer, textile, pharmaceutical, dyes, pesticides and wastewater treatment. A greener approach towards all these industries.	07	15
4	Meaning of Sustainable Development: Understand the Sustainable Development, three principal dimensions: the ecological, the economic and the social dimension, including intergenerational justice; use a systems perspective, to describe sustainability challenges and possibilities for major technical systems and for their transformation to meet sustainability requirements	07	15
5	Concepts of Cleaner Technologies: Cleaner Production (CP), Definition, methodology, Role of CP in Achieving Sustainability, Benefits, Role of Industry, Government and Institutions, Environmental Management	10	20

Bachelor of Engineering Subject Code: 3160514

	Subject Couci Prover i		
	Hierarchy, Relation of CP and EMS. CP case studies: Ammonical nitrogen recovery from		
	wastewater, Fluoride removal from wastewater, Reuse of water from sewage treatment		
	plant, Gas quenching process: replacement of oil with nitrogen and Reduction of hydrogen		
	cyanide from process stack. Reuse of liquid industrial waste from several industries.		
6	Challenges and Practical Implementation:	07	15
	Responsibilities and potentials of companies for action. Green Productivity and emerging		
	technologies. Implementation of the practical applications of Green emerging technologies		
	and sustainable development. Case studies in Green Technology. Green laws compliance.		
ŀ	Reference:		

- 1. Chemistry for Environmental Engineering and Science, Sawyer C.N, McCarty P.L and Parkin G.F. 5th ed. McGraw-Hill Professional, 2003.
- 2. Environmental Chemistry with Green Chemistry, Das A. K. Books and Allied (P) Ltd., Kolkata, India, 2012.
- 3. Green Chemistry: Environmentally Benign Reactions, Ahluwalia, V.K. Ane Books India, New Delhi, India, 2006.
- 4. Green Chemistry: An Introductory Text, Lancaster M. Royal Society of Chemistry, Cambridge, 2002.

Text Books

- 1. Introduction to Green Chemistry, Matlack A.S. Publisher: Marcel Dekker, Newyork, 2001.
- 2. Green Chemistry: Theory and Practice, Anastas P.T. and Warner J.C. Oxford University Press, 1998.
- 3. Pollution Prevention: Fundamentals and Practice, Bishop P. L. McGraw-Hill, Boston, 2000.
- 4. Cleaner Production Audit Environmental System Reviews, Modak P., Visvanathan C. and Parasnis M. Asian Institute of Technology, Bangkok, 1995.
- 5. Handbook of Green Chemistry and Technology, Clark J.H. and Macquarrie D.J. Wiley-Blackwell Publishers, 2002

Other references

List of Open Source Software/learning website: <u>www.nptel.iitm.ac.in/courses/</u>

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
30	15	15	5	5	0		

Legends: R: Remembrance, U: Understanding, A: Application, N: Analyze, E: Evaluate, C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Bachelor of Engineering Subject Code: 3160514

Course Outcomes:

Sr. No.	CO statement	Marks % weightage
CO-1	To understand the principles of green chemistry and engineering	15
CO-2	To understand the field of Green Technology and its approach towards the new discovery and innovation	20
CO-3	To gain knowledge on Green industrial processes	15
CO4	To understand the concept of sustainable development and its importance	15
CO-5	Ability to describe Cleaner Production measures applicable to different industries	20
CO-6	Understand and select the different principles of green chemistry and sustainable development for various applications.	15

List of Tutorials: Students can select any type of green technology and sustainable development method. Each group of students is expected to create a way to utilize green technology and sustainable development process of industry in an innovative way and prepare report of project assigned to his/her group. In addition, each group is expected to give a power point presentation during the semester. The presenter will be selected randomly just prior to the presentation.

List of Open Source Software/learning website: Students can refer to video lectures available on various websites including NPTEL. Students can refer to the CDs which are available with some reference books for the solutions of problems using software's. Students can develop their own programs for the solutions using excel, ChemCAD and other simulation software's.

Bachelor of Engineering Subject Code: 3160515 Semester – VI Subject Name: Solid Waste Management

Type of course: Open elective course

Prerequisite: None

Rationale:

To provide an idea on Solid Waste Management is a pressing issue. The course on Solid Waste Management gives the student an overview of municipal solid waste management including collection, transfer, transport and disposal. To make the students conversant with different aspects of the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits		Examination Marks			
L	Т	Р	C	Theor	Theory Marks 🥒 🛑 Practical Marks			Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	0	3	70	30	0	0	100

Content:

Sr. No.	Content	Total Hrs	% weightage
1	Introducing Municipal Solid Waste Management its Generation and Characteristics of Waste: Sources, Types, composition, quantity, sampling and characteristics of waste, factors affecting generation of solid wastes. Overview: problems and issues of solid waste management-Need for solid waste management-Functional elements such as waste generation, storage, collection, transfer and transport, processing, recovery and disposal in the management of solid waste.	08	15
2	Types of Solid Waste: Waste products during manufacturing and packing, operation of pollution control facilities, generation and minimization at source, recycling, disposal, Bio medical waste-generation and management system, E-waste-generation and management system.	10	20
3	Disposal of Solid Waste: Segregation, volume reduction at source, recovery and recycle; dumping of solid waste-sanitary, landfills-site selection-design and operation of sanitary landfill-leachate, landfill gas management-landfill closure and environmental monitoring-landfill remediation; Municipal solid waste in Indian conditions, legal aspects of solid waste disposal, plastic waste disposal and necessary equipments.	10	20
4	Waste Collection, Storage and Transport: Collection: Collection of solid waste–collection services–collection system, equipments–time and frequency of collection–labour requirement–factors affecting	10	20

Bachelor of Engineering Subject Code: 3160515

	collection-analysis of collection system-collection routes-preparation of master schedules.		
	Transfer and Transport: Need for transfer operation-transfer stations-types -transport means and methods-location of transport stations-Manpower requirement-collection routes: Transfer stations-selection of location, types and design requirements, operation and maintenance.		
5	Risk Assessment and Environmental Legislation	07	15
	Characterization and site assessment, Waste minimization and resource recovery,		
	Laws for solid waste management		

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of The	eory Marks			2	
R Level	U Level	A Level	N Level	E Level	C Level
30	15	15	5	5	0

Legends: R: Remembrance; U: Understanding; A: Application; N: Analyze; E: Evaluate; C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference:

Text Books

- 1. Integrated solid waste management: Engineering Principles and Management Issues, Tchobanoglous G., Theisen H., Vigil S.A. McGraw-Hill, New York, 1993.
- 2. Unit Operations in Resource Recovery Engineering, Vesilind P.A. and Rimer A.E., Prentice Hall, 1981.
- 3. Waste Treatment and Disposal, Willams P. T. John Wiley and Sons, Ltd. 2005.
- 4. Waste Management, Bilitewski B., Härdtle G., Marek K. Springer-Verlag Berlin Heidelberg, 1997.

Other references

- 1. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Housing and Urban Affairs, Government of India, New Delhi, 2000.
- 2. Solid Waste Management: Collection Processing and Disposal, Bhide A.D. and Sundaresan, B.B. NEERI, Nagpur, 2001.
- 3. Practical Handbook of Processing and Recycling Municipal Waste, Manser A.G.R. and Keeling A.A. Lewis Publishers, CRC Press, 1996.
- 4. Waste Management Practices: Municipal, Hazardous, and Industrial, Pichtel J. CRC Press, 2014.
- 5. Hazardous Waste Management, LaGrega M.D., Buckingham P.L., Evans J.C. McGraw-Hill, New York, 1994.
- 6. Hazardous Wastes: Sources, Pathways, Receptors, Watts R.J. John Wiley and Sons, New York, 1998.

Bachelor of Engineering Subject Code: 3160515

List of Open Source Software/learning website: www.nptel.iitm.ac.in/courses/

Course Outcomes:

Sr. No.	CO statement		
CO1	1 An understanding of the nature and characteristics of municipal solid wastes		
CO2	Execute an action plan for types of solid waste		
CO3	Select the appropriate method for solid waste disposal	15	
CO4	Ability to plan waste minimization and design storage, collection, transport, processing and disposal of municipal solid waste	20	
CO5	To implement risk assessment and laws related to solid waste management	15	

List of Tutorials: Students can select any type of solid waste management techniques. Each group of students is expected to create a way to utilize industrial methods of waste minimization techniques in innovative way and prepare report of project assigned to his/her group. In addition, each group is expected to give a power point presentation during the semester. The presenter will be selected randomly just prior to the presentation.

List of Open Source Software/learning website: Students can refer to video lectures available on various websites including NPTEL. Students can refer to the CDs which are available with some reference books for the solutions of problems using softwares. Students can develop their own programs for the solutions using excel, ChemCAD and other simulation softwares.