

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141710 Semester – IV Subject Name: Microprocessor and Interfacing

Type of course: Professional Core Course

Prerequisite: Students should have in depth knowledge of Digital Logic Design.

Rationale: Microprocessor 8085 has simple architecture and an adequate instruction set that enables students to learn necessary architecture, programming and interfacing concepts. The concepts are easily transferable from this device to the microcontrollers, which are widely used in the field of industrial automation.

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits		Examination Marks					
L	Т	Р	С	Theor	Theory Marks 🛛 🚺 📝 Practical Marks					
				ESE (E)	PA (M)	ESE (V)	PA (I)			
4	0	2	5	70	30	30	20	150		

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment

Sr. No.	Content	Total
		Hrs
1	Introduction to Microcomputers and Microprocessors	2
	Introduction to digital computer, Computer languages, Operating systems, Data	
	representation, Microprocessor organization, Memory, Input/output devices, System bus,	
	Microprocessor controlled temperature system.	
2	Microprocessor Architecture and Microcomputer Systems	
	Microprocessor 8085 architecture and its operations, Registers, Flags, Memory,	
	Input/output and interfacing devices, Pin diagram, Bus timings, Demultiplexing the	
	address/data bus, Control signals, 8085 based microcomputer, Interfacing memory,	10
	Interfacing input & output (I/O) devices, Memory mapped I/O, Testing and	10
	troubleshooting of memory and I/O interfacing circuits.	
3	Instructions and Timings	
	Programming model, Data transfer, arithmetic, logical, branch and machine control	
	instructions, Instruction format, Addressing modes, Timing diagram of single byte, two	8
	byte, three byte instructions.	
4	Assembly Language Programming (ALP)	12
	Looping, counting, and indexing, Programming using data transfer, arithmetic, logical and	
	branching instructions, Counters and time delays, Stack and Subroutine, Code conversion,	
	BCD arithmetic and 16-bit data operations.	

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141710

5	Interrupts	4
	Basic understanding of interrupt process, Vector interrupts, Software interrupt.	
6	Interfacing	12
	DAC and ADC, 8255A programmable peripheral interface (PPI) mode 0 and BSR mode,	
	Seven segment multiplexed display and matrix keyboard interfacing using 8255, 8253	
	programmable interval timer.	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
0 to 10	10 to 15	10 to 15	15	10 to 15	15 to 20			
			1.1.1					

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

Reference Books:

- 1. Microprocessor Architecture, Programming, and Applications with the 8085 Ramesh S. Gaonkar Penram International Publishing (India) Pvt. Ltd.
- 2. Microcomputers and Microprocessors: The 8080, 8085 and Z-80 Programming, Interfacing and Troubleshooting by John E. Uffenbeck.
- 3. Microprocessor and Microcontroller fundamentals. The 8085 and 8051 Hardware and Software by William Kleitz.
- 4. 0000 to 8085 Introduction to Microprocessors for Engineers and Scientists, P. K. Ghosh and P.R. Shridhar, Prentice hall of India Pvt. Ltd, 2nd edition.
- 5. The 8085 Microprocessor: Architecture, Programming and Interfacing, K. Udaya Kumar and B.S.Umashankar, Pearson Education.

Course Outcomes:

Sr.	CO statement	Marks %
No.		weightage
	After successful completion of the course students should be able to:	
CO-1	Explain various features of microprocessor, memory and I/O devices including	20
	concepts of system bus.	
CO-2	Simulate assembly language program for general purpose automation.	30
CO-3	Apply knowledge of programming to interface memory, keyboard, display and	30

Page **2** of **3**

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141710

	other input/output devices with microprocessor.					
CO-4	Understand the functionality of various peripheral chips.	20				
List of	List of Experimenta:					

List of Experiments:

Minimum of 40 programs to be written making effective use of all the instructions, and addressing modes. Among these at least 5 programs must be of stack and subroutine and, 5 programs based on peripheral ICs.

1. Introduction to Microprocessor Trainer Kit and identify the different peripheral devices and operating system on it. Write and execute demo programs.

2. Introduction to 8085 simulator IDE and understand the steps to simulate the program using it. Write and execute demo programs. Explain various debugging techniques like single stepping, break point etc.

3. Assembly language programming using data transfer instructions.

4. Assembly language programming using arithmetic and logical instructions.

5. Assembly language programming using branching and looping instructions on trainer kit.

6. Assembly language programming using counter and time delay on trainer kit.

7. Assembly language programming using stack and subroutine on trainer kit.

8. Assembly language programming for code conversion.

9. Assembly language programming for BCD arithmetic and 16-bit data operations.

10.Interfacing and assembly language programming of ADC and DAC with microprocessor 8085.

11. Interfacing and assembly language programming of 8255 Programmable Peripheral Interfacing (PPI) device with microprocessor 8085.

12. Interfacing and assembly language programming of 8253 programmable counter / timer device with microprocessor 8085.

Major Equipment:

- 1. 8085 microprocessor trainer kit with peripheral devices
- 2. Computer system
- 3. CRO, Power supply

List of Open Source Software/learning website:

8085 simulator.

nptel.ac.in

Bachelor of Engineering Subject Code:3141007 **SUBJECT NAME:**Professional Ethics Semester IV

Type of course:

Prerequisite: NA

Rationale:

Teaching and Examination Scheme:

Tea	Teaching Scheme Credits Examination Marks							Total		
L	Т	Р	C	Theor	y Marks	Practical Marks		Marks		
				ESE(E)	PA	ESE (V)	PA(I)			
3	0	0	3	70	30	0	0	100		
Conten	ıt:									

Sr. No.	Content	Total				
1		Hrs				
1	Concepts and theories of Business Ethics: Definitions of Ethics, Personal ethics and Business	6				
	ethics, Morality and law, How are moral standards formed? Religion and Morality, Morality,					
	Etiquette and Professional codes, Indian Ethical Traditions.					
2	Business Ethics: Principles of personal Ethics, Principles of Professional ethics, Evolution of	6				
2		0				
	Ethics Over the years, Honesty, Integrity and Transparency are the touchstones of Business					
	Ethics, Distinction Between Values and Ethics, Roots of unethical Behaviour, Ethical Decision –					
	Making					
3	Ethical Dilemmas, Sources and Their resolutions: What is an Ethical Dilemma, Sources of	5				
	Ethical Behaviour, Code of Personal Ethics for Employees, How to Resolve an Ethical Problem,					
	How to Resolve Ethical Dilemmas.					
4	Ethical Decision – marking in Business: Ethical Models that Guide Decision making, Which	10				
	Approach to use, Ethical Decision Marking with Cross – holder conflicts and competition,					
	Applying Moral Philosophy to Ethical Decision Making, Kohlberg's Model of Cognitive Moral					
	Development, Influences on Ethical Decision Making, Personal values and Ethical Decision					
	Marking					
5	Individual factors: Moral Philosophies and values – Moral Philosophy defined, Moral	9				
	philosophies, Applying Moral Philosophy to Ethical decision Making, Cognitive moral					
	Development, White – Collar Crime, Individual factors in Business Ethics					
6	Human Values for Indian Managers, Lessons from Ancient Indian Education system, The law of	9				
	Karma, Quality of Working life, Ethics of Vivekananda, Gandhiji, Aurobindo and Tagore.					

Bachelor of Engineering

Subject Code:3141007

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
25	20	10	25	20	0		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Business Ethics by AC Fernando
- 2. Business Ethics by Ferrell, Fraedrich and Ferrell.
- 3. Ethics in Management and Indian Ethos by Biswanath Gosh

Course Outcomes: After learning the course the students will able to

Sr. No.	CO statements	Marks
		%Weightage
CO-1	Awareness of types of ethical challenges and dilemmas confronting members	25
	of a range of professions (business, media, police, law, medicine, research)	
CO-2	Identify and describe relevant theoretical concepts related to professional ethics	20
	in engineering	
CO-3	Understand the basic perception of profession, professional ethics, various	20
	moral issues & uses of ethical theories	
CO-4	Distinguish among morals, values, ethics, and the law and to explore how	25
	they each impact engineering practice	
CO-5	Apply learning from Indian history and ethos to ethical practices in engineering.	10

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141706 Semester – IV Subject Name: Analog Signal Processing

Type of course: Professional Core Course

Prerequisite:

- 1. Fundamental of Basic electronics
- 2. Electronics devices like transistor, diode etc.

Rationale: This subject deals with how to process sensor's output and make it suitable for next stage of any measurement system.

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits		Examination Marks				
L	Т	Р	С	Theor	Theory Marks 🛛 🚺 📝 Practical Marks				
				ESE (E)	PA (M)	ESE (V)	PA (I)		
4	0	2	5	70	30	30	20	150	

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment

Sr. No.	Content	Total Hrs
	• • •	
1	 Introduction to OP-AMP: 1.1 Basic ideas about: Dual input-balanced output differential amplifier, Inverting and non-inverting inputs, Dual input-unbalanced output differential amplifier, Single input-balanced output differential amplifier, Single input-Unbalanced output differential amplifier. 1.2 Basic introduction to block diagram of a typical op-amp, Basic introduction to equivalent circuit of the 741 op-amp, Schematic symbol and 8 pin functions and power supply of op-amp. 1.3 Open loop op-amp configuration, the differential amplifier, the inverting amplifier, the non-inverting amplifier, positive saturation output, negative saturation output. 1.4 Definition and explanation to the terms of op-amp as:- Input offset voltage, Input offset current, Input bias current, Total output offset voltage, Thermal drift, Differential input resistor, Input capacitance, Offset voltage adjustment range, Input voltage range, Common mode rejection ratio, Supply voltage rejection ratio, Output voltage swing, Output resistance, Output short circuit current, Supply current, Slew Rate, Average temperature coefficient of input offset voltage (and current), Long-term input offset voltage(and current). 1.5 :-Basic ideas about compensating network for offset voltages compensation, CMRR compensation, SVRR compensation, Temperature compensation 	3

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering

Subject Code: 3141706				
2	An Op-amp with Negative Feedback (Closed Loop):	5		
	2.1 Introduction, Block diagram representation of feedback configuration			
	2.2 -Voltage series feedback amplifier (Non-inverting amplifier with feedback),			
	Derivation of closed loop voltage gain, Input resistance with feedback, Output			
	resistance with feedback, Bandwidth with feedback, Total output offset voltage			
	with feedback, Voltage follower.			
	-Voltage shunt feedback amplifier(Inverting amplifier with feedback),			
	Derivation of closed loop voltage gain, Input resistance with feedback, Output			
	resistance with feedback, Bandwidth with feedback, Total output offset voltage			
	with feedback, Current to voltage converter.			
	-Differential amplifier with one op-amp, Voltage gain			
3		7		
5	General Linear application:	1		
	3.1 DC Amplifier:-			
	- Inverting amplifier, Non-inverting amplifier, Differential amplifier			
	- Inverting amplifier with external offset voltage-compensating network, Non-			
	inverting amplifier with external offset voltage-compensating network,			
	Differential amplifier with external offset voltage compensating network.			
	3.2 AC Amplifier:-			
	- AC inverting Amplifier			
	- AC non-inverting Amplifier			
	3.3 The Peaking Amplifier			
	3.4 Summing Scaling and Averaging Amplifier			
	- Inverting configuration:-Summing amplifier, Scaling amplifier, Averaging amplifier			
	- Non-inverting configuration:- Summing amplifier, Averaging amplifier			
	- Differential configuration:- A subtractor, Summing amplifier			
	3.5 Voltage to Current Converter with Floating Load			
	3.6 Voltage to Current Converter with Grounded Load			
	3.7 Current to Voltage Converter			
	3.8 Very High Input Impedance Circuit:-			
	- DC-coupled voltage follower			
	- AC-coupled voltage follower with input resistance bootstrapped			
	3.9 The Integrator , with its 0db gain frequency (f_b) and gain limiting frequency derivation (f_a) ,			
	3.10 The Differentiator , with its 0db gain frequency(f_a) and gain limiting frequency derivation(f_b),			
4		8		
4	Comparators and Converters: 4.1 Basic comparator, Zero crossing detector, Schmitt trigger	o		
	4.2 Comparator characteristics, Limitation of OP-AMP as comparator			
	4.3 OP-AMP as voltage limiter:- Positive voltage limiter and Negative voltage limiter			
	4.4 CLIPPER:-			
	- Positive clippers, Negative clippers			
	- Small signal half wave rectifiers			
	4.5 CLAMPERS:- Positive and negative clampers			
	4.6 Absolute value output circuit, Peak detector, Sample and hold circuit			
	4.7 Digital to Analog Converter(DAC):-			

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering

	Subject Code: 3141706	
	- D/A converter with binary - weighted resistor	
	- D/A converter with R and 2R resistor	
	4.8 Analog to Digital Converters (ADC):-	
	- Successive approximation A/D converter	
	4.9 Voltage to frequency and frequency to voltage converters	
	- V/F Converter:- 1) 9400 V/F converter equivalent circuit, connection diagram,	
	waveforms and its working. 2) V/F Design procedure, 3) Single supply	
	 operation F/V Converter :- 1) 9400 F/V Design procedure 2) Single supply operation 	
5	Active and Passive Filters:	6
5	5.1 Introduction to active and passive filters, Introduction to low pass and high pass	U
	filters	
	5.2 Low Pass Filters:-	
	- Passive first order low pass filter with its transfer function,	
	- Active first order low pass Butterworth filter with its transfer function, filter	
	design	
	- Active second order low pass Butterworth filter with transfer function, filter	
	design	
	5.3 High pass Filters:-	
	 Passive first order high pass filter with its transfer function 	
	- Active first order high pass Butterworth filter with its transfer function, filter	
	design	
	- Active second order high pass Butterworth filter with transfer function, filter	
	design	
	5.4 Higher Order Active Filters :- Third order and fourth order low pass	
	Butterworth filter	
	5.5 Band Pass Filters :- 1) Wide band Pass filter and 2) Narrow band pass filters	
	5.6 Band–Reject Filters :- 1) Wide band-reject filter and 2) Narrow band-reject	
	filter(Notch Filter)	
	5.7 All Pass Filter	
6	OSCILLATORS	5
U	6.1 Introduction to oscillator, Oscillator principles, Oscillator block diagram	J
	6.2 Phase shift oscillator, Wien bridge oscillator, Quadrature oscillator, Square wave	
	generator, Triangular wave generator, Sawtooth wave generator	
	6.3 Voltage - controlled oscillator NE/SE 566	
7	Specialized IC Applications:	10
'	7.1 The 555 Timer:-	10
	- 7.1.1 :- Introduction to 555 timer IC, 555 timer pin connection diagram and	
	block diagram	
	- 555 timer as a monostable multivibrator :- Operation and circuit diagram	
	- Monostable multivibrator applications :- 1) Frequency divider, 2) Pulse	
	stretcher	
	- 555 timer as an astable multivibrator :- Operation and circuit diagram Astable	
	multivibrator applications :- 1) Square wave oscillator, 2) Ramp generator	
	7.2 Instrumentation amplifier	
L	1.2 Inst unchtudon unparter	L

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141706

	Subject Code: 5141700	
	- Instrumentation amplifier using three op-amp for resistive transducer and bridge	
	 Instrumentation amplifier for high gain and high input impedance (Text Book 3-page 161) 	
	- Instrumentation amplifier using RTD. Circuit design for converting the change	
	in resistance of RTD into 0 to 5 V output with compensation of offset voltages, CMRR, temperature compensation for the range of 30 °C to 200 °C.	
	7.3 Special Purpose amplifiers	
	- Logarithmic amplifier, Isolation amplifier, Chopped stability amplifier,	
	Programmable gain amplifier, Matching sensor to circuit (Text Book 3- page	
	139)	
8	Voltage Regulators	4
	8.1 Fixed Voltage Regulators (78XX, 79XX series devices)	
	8.2 Adjustable Voltage Regulators (LM 317 series devices)	
	8.3 Design of \pm 5V and \pm 15V Regulated Power Supply	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
21	21	14	7	7	7	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. The Art of Electronics (second edition) by Paul Horowitz and Winfield Hill, Cambridge University Press
- 2. Op-amps and Linear Integrated Circuits by Ramakant A. Gayakward, Prentice Hall India.
- 3. Design with operational amplifiers and Analog integrated circuits by Sergio Franco, McGraw Hill
- 4. Introduction to biomedical equipment technology (fourth edition) by Joseph J Carr and John M. Brown

Course Outcomes:

After learning the course, the students should be able to

Sr.	CO statement	Marks % weightage
No.		
CO-1	Use basic knowledge of electronics in amplifiers, filters, comparators	40
	converters and signal conditioning.	

Page 4 of 5

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141706

	Subject Code: 5141700					
CO-2	Analyze and select an appropriate op-amp as per the application.	10				
CO-3	Design the amplifier, filters, comparators, converters and signal conditioning circuits using instrumentation amplifier.	40				
CO-4	Apply knowledge of voltage regulator ICs for designing of regulated power supply.	10				

List of Experiments:

- 1. To study and perform inverting and non-inverting and differential amplifier using op-amp without feedback.
- 2. To study and perform offset voltages and its compensation network.
- 3. To study and perform CMRR configuration and its compensation network.
- 4. To study the effect of temperature co-efficient and its compensation network
- 5. To study and perform inverting and non-inverting and differential amplifier using op-amp with feedback.
- 6. To study and perform summing amplifier and subtractor.
- 7. To study and perform voltage to current converter with grounded load and with floating load.
- 8. To study and perform current to voltage converter.
- 9. To study and perform comparator circuit using op-amp and make PWM wave forms.
- 10. To study and perform Schmitt trigger circuit using op-amp.
- 11. To study and perform positive and negative clippers.
- 12. To study and perform positive and negative clampers.
- 13. To study and perform the integrator and the differentiator.
- 14. To study and design first order low pass filter and high pass filter using op-amp.
- 15. To measure frequency using Wien bridge oscillator.
- 16. Design and study of monostable, and astable multivibrators using IC555.
- 17. To study and perform instrumentation amplifier using RTD. Design a Circuit for converting the change in resistance of RTD into 0 to 5 V output with compensation of offset voltages, CMRR and temperature compensation for the range of 30 °C to 200 °C.

Major Equipment:

741 IC, OP 07, Voltage Regulator IC, NE555 IC, CRO, Function Generator

List of Open Source Software/learning website:

- 1. http://nptel.ac.in/video.php?subjectId=117103063
- 2. http://www.learnabout-electronics.org/Amplifiers/amplifiers60.php

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141708 Semester – IV Subject Name: Control Theory

Type of course: Professional Core Course

Prerequisite:

- 1. Calculus
- 2. Ordinary differential equations
- 3. Complex variables
- 4. Linear system concepts
- 5. Laplace transforms.

Rationale: To prepare students for Basics of Control Engineering

Teaching and Examination Scheme:

Teaching Scheme			Teaching Scheme Credits		Examination Marks			
L	Т	Р	С	Theory Marks		ory Marks Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
4	0	2	5	70	30	30	20	150

, con

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment

Content:

Sr. No.	Content	Total
		Hrs
1	Introduction to Control Systems	4
	Introduction	
	Brief History of Automatic Control	
	Examples of Control Systems	
	Engineering Design	
	Control System Design	
	Mechatronic Systems	
	Green Engineering	
	The Future Evolution of Control Systems	
	Design Examples	
	Sequential Design Example*	
2	Mathematical Models of Systems	6
	Introduction	
	Differential Equations of Physical Systems	
	Linear Approximations of Physical Systems	
	The Laplace Transform	
	The Transfer Function of Linear Systems	
	Block Diagram Models	

Page 1 of 5

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141708

	Subject Code: 3141708	
	Signal-Flow Graph Models	
	Design Examples	
	The Simulation of Systems Using Control Design Software	
	Sequential Design Example*	
3	State Variable Models	6
	Introduction	
	The State Variables of a Dynamic System	
	The State Differential Equation	
	Signal-Flow Graph and Block Diagram Models	
	Alternative Signal-Flow Graph and Block Diagram Models	
	The Transfer Function from the State Equation	
	The Time Response and the State Transition Matrix	
	Design Examples	
	Analysis of State Variable Models Using Control Design Software	
	Sequential Design Example*	
4	Feedback Control System Characteristics	6
	Introduction	
	Error Signal Analysis	
	Sensitivity of Control Systems to Parameter Variations	
	Disturbance Signals in a Feedback Control System	
	Control of the Transient Response	
	Steady-State Error	
	The Cost of Feedback	
	Design Examples	
	Control System Characteristics Using Control Design Software	
	Sequential Design Example*	
5	The Performance of Feedback Control Systems	6
	Introduction	
	Test Input Signals	
	Performance of Second-Order Systems	
	Effects of a Third Pole and a Zero on the Second-Order System Response	
	The S-Plane Root Location and the Transient Response	
	The Steady-State Error of Feedback Control Systems	
	Performance Indices	
	The Simplification of Linear Systems	
	Design Examples	
	System Performance Using Control Design Software	
	Sequential Design Example*	
6	The Stability of Linear Feedback Systems	6
	The Concept of Stability	
	The Routh-Hurwitz Stability Criterion	
	The Relative Stability of Feedback Control Systems	
	The Stability of State Variable Systems Design Examples	

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 31/1708

	Subject Code: 3141708	1
	System Stability Using Control Design Software	
	Sequential Design Example*	
7	The Root Locus Method	6
	Introduction	
	The Root Locus Concept	
	The Root Locus Procedure	
	Parameter Design by the Root Locus Method	
	Sensitivity and the Root Locus	
	PID Controllers	
	Negative Gain Root Locus	
	Design Examples	
	The Root Locus Using Control Design Software	
	Sequential Design Example*	
8	Frequency Response Methods	6
	Introduction	
	Frequency Response Plots	
	Frequency Response Measurements	
	Performance Specifications in the Frequency Domain	
	Log Magnitude and Phase Diagrams	
	Design Examples	
	Frequency Response Methods Using Control Design Software	
	Sequential Design Example*	
9	Stability in the Frequency Domain	6
	Introduction	
	Mapping Contours in the s-Plane	
	The Nyquist Criterion	
	Relative Stability and the Nyquist Criterion	
	Time-Domain Performance Criteria in the Frequency Domain	
	System Bandwidth	
	The Stability of Control Systems with Time Delays	
	Design Examples	
	PID Controllers in the Frequency Domain	
	Stability in the Frequency Domain Using Control Design Software	
	Sequential Design Example*	
	aquantial Design Example* (Tyter/Instructor/Teacher has to select one asso study and some for	1

Note: Sequential Design Example* (Tutor/Instructor/Teacher has to select one case study and carry forward same to teach all the topics of syllabus.)

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
21	21	14	7	7	-		

Page 3 of 5

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering

Subject Code: 3141708 Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Richard C. Dorf & Robert H. Bishop : Modern Control Systems, 13th Edition, Pearson, 2017
- 2. Norman S. Nise, Control Systems Engineering, Wiley India, Student Edition (Fifth), 2009
- 3. NAGRATH & GOPAL : Control system engineering, New age International Publication (1996)
- 4. B.C. KUO : Automatic control systems, Prentice Hall of India Ltd, 1995
- 5. OGATA KATSUHIKO : Modern Control Engineering, PHI, 1996

Course Outcomes:

Sr.	CO statement	Marks %
No.		weightage
CO-1	Explain modeling of electrical, mechanical and electromechanical, process	30
	systems	
CO-2	Analysis of properties of control systems, such as sensitivity, stability, tracking,	40
	in time and frequency domains	
CO-3	Apply differential equations, transfer functions, block diagrams, and state	30
	variables in control system design.	

List of Experiments:

- 1. The Simulation of Systems and models Using Control Design Software.
- 2. Analysis of State Variable Models Using Control Design Software
- 3. Analysis of Control System Characteristics Using Control Design Software
- 4. Identification of System Performance Using Control Design Software
- 5. System Stability analysis Using Control Design Software
- 6. The Root Locus plots and analysis study Using Control Design Software
- 7. Frequency Response Methods analysis study Using Control Design Software
- 8. Stability analysis in the Frequency Domain Using Control Design Software
- 9. Find Unit step, ramp, and impulse response of first and second order system using Control Design Software.
- 10. Derive the open loop and closed loop poles and zeros for varieties of the systems. Draw their Polezero map and check the system stability.

Page **4** of **5**

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141708

- 11. Draw the step response of over damped, under damped and critically damped system for the second order system having different value of damping factor.
- 12. Find out time domain specification of second order system using Control Design Software.

Major Equipment:

MATLAB/SCILAB Control Design Software

List of Open Source Software/learning website:

- 1. http://nptel.ac.in/video.php?subjectId=108102043
- 2. http://en.wikibooks.org/wiki/Control Systems/Root Locus
- 3. http://en.wikibooks.org/wiki/Control_Systems/Bode_Plots

4. http://en.wikipedia.org/wiki/Nyquist_stability_criterion

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141709 Semester – IV Subject Name: Principle of Measurement Science

Type of course: Basic Science

Prerequisite: There is no prerequisite knowledge required for this course.

Rationale: Industrial Instrumentation is a unique part of industry that deals with the measuring of variables that influence materials production and equipment during the development of a product. Every Instrument engineers have to deal with various types of Instruments in the working environment. This course describes the working principles of these measuring instruments.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks 🛛 🤞		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment

Sr. No.	Content	Total
		Hrs
1	INTRODUCTION OF MEASUREMENTS:	5
	Definition of Instrumentation.	
	-Static Characteristic: Accuracy, Precision, Resolution, Sensitivity, Scale, Threshold,	
	Hysteresis, Drift, Dead Zone, Repeatability, Linearity, etc.	
	- Dynamic Characteristic: Speed of Response, Lag errors, Fidelity, Response of 1 st & 2 nd	
	order system.	
	- Types of errors etc., - Terminology and Specifications of Instruments,	
	- Measurement Standards: Time, Frequency, Voltage, Current, 3-15 psi etc., ANSI,	
	ASME, ADA, BS, DIN, CSMR, FCI, API, ISI, and Introduction Reliability and safety.	
2	Transducers: Classification	5
	Electrical Transducer – Resistance, Capacitance, Inductance Type, Piezoelectric,	
	Transduction, etc.	
	Mechanical Transducers, Selection of Transducer	
3	TEMPERATURE MEASUREMENT : Types, Selection, Installation, Calibration	10
	Temperature measurement using physical parameter	
	-Electrical type temperature sensor-RTD, RTD resistance measurement with Wheatstone	
	Bridge Circuits: two-wire circuit, three-wire circuit, four-wire measurement circuit, RTD	
	resistance measurement with Constant Current Source.	
	-Thermistor -Thermocouples-laws of thermocouple-fabrication of industrial	

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141709

Subject Code. 5141707				
	thermocouples-signal conditioning -cold junction compensation-special techniques for			
	measuring high temperature using thermocouples-Radiation methods of temperature measurement			
4	PRESSURE MEASUREMENT : Types, Selection, Installation, Calibration, Units of	10		
-	pressure –manometers -different types -elastic type pressure gauges -Bourdon tube			
	bellows-diaphragms -Bell Gauge -Measurement of pressure using Electrical transducer as			
	secondary transducer -vacuum pressure measurement -Mechanical gauges -Mcleod gauge -			
	thermal conductivity gauges-Ionization gauge cold cathode and hot cathode types.			
	Differential pressure measurement -flapper-nozzle assembly. Piston type pressure			
	measurement; Dead Weight Piston Gauges			
		10		
5	LEVEL MEASUREMENT: Types, Selection, Installation, Calibration, Electrical	10		
	methods -Resistive, Inductive & Capacitive -Measurement of Level using Gamma rays -			
	Ultrasonic Methods -Measurement of Liquid level using Float type -Displacer type -Air-			
	Purge system, Solid Level measurement -Hydrostatic types. Level Switches.			
6	FLOW MEASUREMENT: Types, Selection, Installation, Calibration, Types of flow;	10		
	Units of flow -volumetric and mass flow; Importance of flow measurement, Mechanical			
	Flow meters: Variable head type flow meters -variable area flow meters, Mass flow			
	meters, Electrical flow meters -EM flow meter -turbine flow meter -Ultrasonic flow meter			
	-Vortex flow meter -Direct and Indirect methods -open-channel & solid flow measurement			
	-Flow Meter Selection and Designs.			

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
21	21	21	7	7	7	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table. **Reference Books:**

- 1. Instrument Engineers' Handbook: Process Measurement and Analysis by B. G Liptak.
- 2. Handbook of Applied Instrumentation by D. M. Considine and Sidney David Ross, McGraw Hill Publication.
- 3. Encyclopedia of Instrumentation and Control by D. M. Considine, Kriege Publication Co.
- 4. Instrumentation Reference Book by Walt Boyes, Butterworth Heinemann Publisher.

Page 2 of 3

INSTRUMENTATION & CONTROL ENGINEERING (17) Bachelor of Engineering Subject Code: 3141709

- 5. Introduction to Instrumentation and Control by A. K. Ghosh, 4th edition, PHI publications
- 6. Industrial Instrumentation by K. Krishnaswamy and S. Vijayachitra, New Age International Publication.
- 7. Measurement Systems: Application and Design by E. D. Doeblin, McGraw Hill Publication

Course Outcomes:

Sr. No.	CO statement	Marks % weightage
CO-1	Explain basic concept in measurement of temperature, level, pressure and flow sensors	30
CO-2	Interpret various measurement terms, errors and identify sensor and their relevant specification	35
CO-3	Analyze the performance of Temperature, pressure, level, flow sensor and their relevant application related to industry.	35

List of Experiments:

- 1. Characterization of Thermocouples.(J/T/K/R/S) Equipment: Oven, thermocouples, Multimeter, thermocouple reference table, Thermocouple
- 2. Characterization of RTD (PT100) Equipment: Oven, PT100 probe, RTD simulator, Temperature indicator, Multimeter
- 3. Measurement of flow using rotameter Equipment: Rotameter
- 4. measurement of flow using DP cell Equipment: Differential Pressure Transmitter, or Manometer etc.
- 5. Flow coefficient of Orifice: Orifice installed in a pipe of a liquid fluid, Manometer or DPT.
- 6. Flow Coefficient of Venturi: Venturi installed in a pipe of a liquid fluid, Manometer or DPT.
- 7. Measurement of Level using Capacitance type of Level Sensor
- 8. Calibration of pressure gauge using dead weight pressure tester and preparation of report Equipment: Dead weight pressure tester setup, Standard weight set.

Major Equipment:

Specified with list of experiments: Dead weight tester, universal calibrator, Temperature bath, Voltage/ current Simulator, RTD/ Thermocouple calibrators, Flow meters, etc.

List of Open Source Software/learning website:

- 1. http://nptel.ac.in/video.php?subjectId=108105064
- 2. http://www.onlinevideolecture.com/electrical-engineering/nptel-iit-kharagpur/industrial-instrumentation/?course_id=514
- 3. https://www.isa.org

Page 3 of 3